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a b s t r a c t

We investigate the relationship between the Dynamical Systems analysis and the Lie Symmetry analysis
of ordinary differential equations. We undertake this investigation by looking at a relativistic model of
self-gravitating charged fluids. Specifically we look at the impact of specific parameters obtained from
Lie Symmetries analysis on the qualitative behaviour of the model. Steady states, stability and possible
bifurcations are explored. We show that, in some cases, the Lie analysis can help to simply the dynamical
systems analysis.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the real world problems (in biology, finance, econom-
ics, industry, etc.), and many fundamental laws of physics and
chemistry are formulated in the form of differential (or difference)
equations. Various methods for solving or analysing such equa-
tions have been developed. In the late 19th century, Marius Sophus
Lie unified many of these methods by introducing the notion of
(what has become known as) Lie groups [23]. The Lie theory of
differential equations has been phenomenally successful in deter-
mining solutions to differential equations [3,21]. It is a useful tool
that can be applied to either find solutions explicitly or it can
be used to classify equations via equivalence transformations.
A major hurdle has been the oftentimes tedious calculations
involved in finding the symmetries. However, with the advent of
very capable computer packages [11,6], this disadvantage has been
overcome. Symmetries can be easily calculated for a variety of
equations and then used to obtain solutions, if possible.

Another very useful approach to differential equations is that of
dynamical systems analysis [26] in which the long-term behaviour of
a system is investigated by focusing on linearization around equili-
brium points. This approach has its genesis in Newtonian mechanics,
and emphasizes on qualitative rather than quantitative questions
[2,17,22]. For example, it was eventually realized that equations
describing the motion of the three-body problem (sun, earth and
moon) were difficult to solve analytically [26]. Instead of focusing

only of the exact positions of the planets at all times, people looked
at their stability. Thus, the qualitative analysis is helpful, particularly
when the exact solution of an equation cannot be found (and also
can give more useful information even when exact solutions exist).

Though these two approaches look as they belong to different
areas of mathematics, they have some structures in common. For
instance, in a natural way, the equivariant bifurcation theory can
be viewed as an application of Lie groups in symmetric systems
[30]. Therefore, it is natural to consider the use of both approaches
when analysing any differential equation of interest. In what
follows, we present the results of applying both methods to an
Emden–Fowler equation of index three. Such equations have a
lengthy history [29,19,25,10,14] but, we believe, have not been
approached in this two-fold manner. We will show how each
method can be used to obtain interesting information about the
behaviour of the solutions.

2. The model

The metric governing the shear-free motion of a spherically
symmetric perfect fluid can be written as

ds2 ¼ �e2νðt;rÞ dt2þe2λðt;rÞ½dr2þr2ðdθ2þ sin 2 θ dϕ2Þ� ð1Þ
where ν and λ are the gravitational potentials. If we impose the
presence of an electromagnetic field, the usual Einstein field
equations must be modified and supplemented with Maxwell's
equations. The resulting Einstein–Maxwell system is then given by

ρ¼ 3
λ2t
e2ν

� 1
e2λ

2λrrþλ2r þ
4λr
r

� �
� E2

r4e4λ
ð2Þ

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nlm

International Journal of Non-Linear Mechanics

http://dx.doi.org/10.1016/j.ijnonlinmec.2014.02.010
0020-7462/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: ptchepmo@ymail.com (P.M. Tchepmo Djomegni),

govinder@ukzn.ac.za (K.S. Govinder).

International Journal of Non-Linear Mechanics 62 (2014) 58–72

www.sciencedirect.com/science/journal/00207462
www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.02.010
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.02.010
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.02.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.02.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.02.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.02.010&domain=pdf
mailto:ptchepmo@ymail.com
mailto:govinder@ukzn.ac.za
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.02.010


p¼ 1
e2ν

ð�3λ2t �2λttþ2νtλtÞþ 1
e2λ

λ2r þ2νrλrþ2νr
r

þ2λr
r

� �
þ E2

r4e4λ
ð3Þ

p¼ 1
e2ν

ð�3λ2t �2λttþ2νtλtÞþ 1
e2λ

νrrþν2r þ
νr
r
þλr

r
þλrr

� �
� E2

r4e4λ
ð4Þ

0¼ νrλt�λtr ð5Þ

E¼ r2eλ� νΦr ð6Þ

Er ¼sr2e3λ ð7Þ
Here, ρ is the energy density, p is the isotropic pressure, s is the
proper charge density of the fluid and we interpret E as the total
charge contained within the sphere of radius r centred around the
origin of the coordinate system. The electromagnetic field is
present via Φr.

Integrating (5) and combining (3) and (4) and integrating allow
us to reduce the system to

ρ¼ 3e2h�e�2λ 2λrrþλ2r þ
4λr
r

� �
� E2

r4e4λ
ð8Þ

p¼ 1
λte3λ

eλ λ2r þ
2λr
r

� �
�e3λþ2h� E2

r4eλ

" #
t

ð9Þ

eν ¼ λte�h ð10Þ

eλ λrr�λ2r �
λr
r

� �
¼ � ~F� 2E2

r4eλ
ð11Þ

E¼ r2eλ� νΦr ð12Þ

Er ¼sr2e3λ; ð13Þ
where h¼ hðtÞ and ~F ¼ ~F ðrÞ are arbitrary functions of integration.
This means that we only need to solve (11) in order to obtain all
the other unknown functions.

Using the transformation [7,15]

x¼ r2 ð14Þ

y¼ e� λ ð15Þ

f ðxÞ ¼
~F

4r2
ð16Þ

gðxÞ ¼ E2

2r6
ð17Þ

we can rewrite (11) as

y″¼ f ðxÞy2þgðxÞy3: ð18Þ

Remark. (1) In this approach, our interest is only in point
symmetries. We acknowledge that a variety of other symmetries
exist, including potential [4], Lie–Bäcklund/generalized [1,21],
Lambda [20,24,8] and non-local [9]. Expanding our study to those
symmetries may indeed yield other useful results but they are
outside the scope of our work.

(2) In general, (18) does not admit any Lie point symmetries. As
a result, it cannot be linearized under a point transformation. In
what follows, we investigate under what conditions the equation
does admit point symmetries. We first look at conditions under
which it admits a single Lie point symmetry (and so is part of the
equivalence class of autonomous second order differential equa-
tions). Thereafter, we investigate additional conditions under
which the equation admits a second Lie point symmetry. This is
important as the possession of two Lie point symmetries guaran-
tees that the equation can be reduced to quadratures.

Eq. (18) is the fundamental non-linear ordinary differential
equation which determines the behaviour of self-gravitating
charged fluids in general relativity [15]. Once y is determined,
Kweyama et al. [15] found that

G¼ a
∂
∂x

þðbyþcÞ ∂
∂y

ð19Þ

is a point symmetry of (18), provided the functions a(x), b(x), and c
(x) satisfied the following system of ordinary differential equa-
tions:

a″¼ 2b0 ð20Þ

b″¼ 2fc ð21Þ

c″¼ 0 ð22Þ

af 0 þð2a0 þbÞf ¼ �3cg ð23Þ

ag0 þð2a0 þ2bÞg ¼ 0: ð24Þ
This system was reduced to

2b¼ a0 þα ð25Þ

c¼ c0þc1x ð26Þ

g¼ g2a
�3 exp �

Z
α dx
a

� �
; ð27Þ

f ¼ a�5=2 exp �
Z

α dx
2a

� �
f 2�3g2

Z
ca�3=2 exp

Z
α dx
a

� �
dx

� �
;

ð28Þ
where α, c0, c1, f2 and g2 are arbitrary constants. Setting

X ¼
Z

dx
a

ð29Þ

Y ¼ y exp �
Z

b dx
a

� �
�
Z

c
a
exp �

Z
b dx
a

� �
dx; ð30Þ

(18) can be transformed into autonomous form. When ca0, a
satisfied the non-linear fourth order equation

caa⁗þ c
5a0

2
þα

2

� �
�c0a

� �
a‴¼ �12g2c

3a�3 exp �
Z

α dx
a

� �
; ð31Þ

and (18) became

Y″þαY 0 þ Mþα2

4

� �
Y ¼ g2Y

3þ f 2Y
2þN: ð32Þ

When c¼0

a¼ a0þa1xþa2x2; ð33Þ
and (18) became

Y″þαY 0 þβY ¼ g2Y
3þ f 2Y

2; ð34Þ
where

β¼ �1
4
a21þa0a2þ

1
4
α2; ð35Þ

and M, N, a0, a1 and a2 are constants. The quantities M and N are
constants of integration and are given by [15]

M¼ 1
2
aa″�1

4
a02�2f 2Iþ3g2I

2 ð36Þ

and

N¼ �a�1=2 exp �
Z

α dx
2a

� �
ac0 �1

2
a0cþ1

2
αc

� �

� 1
2
aa″�1

4
a02þα2

4

� �
Iþ f 2I

2�2g2I
3; ð37Þ
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