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a b s t r a c t

In this paper we extend some of our previous works on continua with stress threshold. In particular

here we propose a mathematical model for a continuum which behaves as a non-linear upper

convected Maxwell fluid if the stress is above a certain threshold and as a Oldroyd-B type fluid if the

stress is below such a threshold. We derive the constitutive equations for each phase exploiting the

theory of natural configurations (introduced by Rajagopal and co-workers) and the criterion of the

maximization of the rate of dissipation. We state the mathematical problem for a one-dimensional flow

driven by a constant pressure gradient and study two peculiar cases in which the velocity of the inner

part of the fluid is spatially homogeneous.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A large variety of materials such as food products, polymers,
paints, oils and foams cannot be described by the classical linear
viscous model. For this reason a large class of non-Newtonian
models have been developed with the aim of explaining non-
linear behaviors such as shear thinning/thickening, non-linear
creep and stress relaxation.

In his celebrated work [7] Maxwell developed the first rate-
type fluid model capable of describing stress relaxation, while
later Burgers [1] developed a rate-type model for describing some
geomaterials which included the classical rate-type model due to
Oldroyd [8], namely the Oldroyd-B type model. Oldroyd was the
first to develop a consistent framework for the rheology of rate-
type viscoelastic fluids, focussing on the importance of the frame
invariance and introducing some kinds of derivatives to obtain
proper frame indifferent constitutive equations.

Since these seminal works, a plethora of models for viscoelas-
tic response have been developed and numerous frame-invariant
time derivatives have been introduced. Rajagopal and co-workers
have developed in [10] a proper thermodynamical framework
from which most of the viscoelastic constitutive relations can be
derived.

The laminar flow of rate-type fluids have been extensively
studied both in planar and cylindrical geometries. Waters and
King [16] studied the pressure driven flow of an Oldroyd-B fluid in

a straight cylindrical pipe, obtaining exact solutions by means of
Laplace transform method. Rahaman and Ramkissoon [9] have
studied the non-stationary flow of a Maxwell fluid in a pipe.
Steady solutions due to oscillating cylindrical boundaries for
second grade and Oldroyd-B type fluids have been obtained by
Rajagopal [12] and Rajagopal and Bhatnagar [13].

In this paper we investigate the behavior of a non-Newtonian
incompressible rate-type fluid which switches from an Oldroyd-B
behavior to a non-linear Maxwell behavior depending on whether
the stress is larger or smaller than a certain threshold. A typical
example of a continuum that changes its behavior depending on
the value of some function of the stress is the so-called Bingham
fluid, which is a Newtonian viscous fluid that exhibits a threshold
(the so-called yield stress) below which the strain rate is zero (so
that no deformations occur).

In previous works we have studied a series of extensions of
this simple model and we have investigated the corresponding
mathematical problems in one-dimensional settings. The first
extension was to the case in which the region where the stress
is below the threshold behaves like a Neo-Hookean elastic solid
(see [2]) and we have subsequently extended this case to the one
in which the same region behaves like a visco-elastic Maxwell
fluid [3].

We have then studied the case of an elastic material such that
no deformation occurs above a certain threshold [4] and we have
investigated the case in which the transition from rigid to elastic
occurs when the stress becomes greater than the threshold (see
[5,6]). The methodology developed in all these papers can be used
to formulate a variety of models for continuum with stress
threshold.
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All the models were obtained in the framework of the theory
of natural configurations developed by Rajagopal and co-workers
[11]. Depending on the constitutive equations for the phases
constituting the continuum, we have obtained mathematical
formulations of various complexity. In general these formulations
consist of a free boundary problems involving hyperbolic and
parabolic equations.

In this paper we study the case of a material in which one
‘‘phase’’ behaves as a non-linear Maxwell fluid while the other as
a Jeffreys fluid. For the sake of simplicity we will choose for the
latter the Oldroyd-B fluid model while for the former the upper
convected Maxwell model. Minor changes allow to consider other
models, like corotational Maxwell model or interpolated Maxwell
model for the Maxwell fluid, and generalized Jeffreys models for
the rate-type fluid (e.g. Oldroyd A).

The general constitutive equation for a non-linear Maxwell
fluid is given by

l
DT

Dt
þT¼ 2ZD, ð1Þ

where l is a positive parameter, T is the stress tensor, Z is the
viscosity and D is the symmetric part of the velocity gradient, and
where Dð�Þ=Dt stands for any frame-invariant derivative (upper
convected, lower convected, corotational). On the other hand, the
general constitutive equation for a generalized Jeffreys model is

l1
DT

Dt
þT¼ 2Z Dþl2

DD

Dt

� �
, ð2Þ

l1 and l2 being positive parameters. In both cases the stress is
obtained by solving a differential equation involving a symmetric
tensor (meaning six scalar differential equations). In the frame-
work of the theory of natural configurations we will obtain
specific forms for Eqs. (1) and (2) imposing the elastic response
of the continuum, the way the body dissipates energy and
requiring that the dissipation is maximum.

As we said we will focus on two specific kinds of non-linear
visco-elastic fluids, but the procedure we are going to describe
can be applied to any fluid whose constitutive equations are of
the type (1), (2).

Throughout the paper we use the terminology ‘‘fluid with a
stress threshold’’, which seems to represent an oxymoron if one
think to the very definition of a fluid. By the way, with this
expression we intend to indicate that the switching from the
Oldroyd-B behavior to the Maxwell behavior occurs when the

second invariant of the stress tensor reaches a fixed threshold
value.

2. Kinematical results

We consider a material domain OAR3 and we assume that
there exists a surface G that divides the domain into two regions
O1 and O2 such that O¼O1 [O2. We suppose that the material
that occupies the region O1 behaves as a upper convected
Maxwell fluid, while the material within the region O2 as an
Oldroyd-B fluid. We assume that O evolves in time so that at time
t40 the domain is Ot ¼O1t [O2t , we define Gt as the sharp
interface separating the domains O1t and O2t (see Fig. 1). The
motion of a particle ~xAO is given by

~x ¼Yð~X ,tÞ, ð3Þ

where ~X AO is the Lagrangian coordinate and ~x is the Eulerian
coordinate, that is the position of particle ~X at time t. We assume
that Y is invertible. The velocity, in the Eulerian coordinate
system, is given by

~vð~x,tÞ ¼
@Yð~X ,tÞ

@t

�����
~X ¼ Y�1

ð~x ,tÞ

, ð4Þ

and the acceleration by

~að~x,tÞ ¼
@2Yð~X ,tÞ

@t2

�����
~X ¼ Y�1

ð~x ,tÞ

: ð5Þ

The deformation gradient of the motion is

F ¼: grad Yð~X ,tÞ, ð6Þ

where grad denotes the gradient with respect to the Lagrangian
coordinates. The velocity gradient is

Lð~x,tÞ ¼: r~vð~x,tÞ, ð7Þ

where r is the gradient taken with respect to the Eulerian
coordinates. The symmetric part of the velocity gradient is
given by

Dð~x,tÞ ¼: 1
2ðLþL

T
Þ: ð8Þ

We introduce also the left and right Cauchy–Green tensors

B¼ FFT , C¼ FTF: ð9Þ
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Fig. 1. Schematic diagram illustrating the evolution of the natural configurations of ‘‘phases’’ O1 and O2.
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