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a b s t r a c t

Chaos may be exploited in order to design dynamical systems that may quickly react to some new

situation, changing conditions and their response. In this regard, the idea that chaotic behavior may be

controlled by small perturbations allows this kind of behavior to be desirable in different applications.

This paper presents an overview of chaos control methods classified as follows: OGY methods – include

discrete and semi-continuous approaches; multiparameter methods – also include discrete and semi-

continuous approaches; and time-delayed feedback methods that are continuous approaches. These

methods are employed in order to stabilize some desired UPOs establishing a comparative analysis of

all methods. Essentially, a control rule is of concern and each controller needs to follow this rule. Noisy

time series is treated establishing a robustness analysis of control methods. The main goal is to present

a comparative analysis of the capability of each chaos control method to stabilize a desired UPO.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Non-linearities are responsible for a great variety of possibi-
lities in natural systems. Chaos is one of these possibilities being
related to an intrinsic richness. A geometrical form to understand
chaos is related to a transformation known as Smale horseshoe
that establishes a sequence of contraction–expansion–folding
which causes the existence of an infinity number of unstable
periodic orbits (UPOs) embedded in a chaotic attractor. This set of
UPOs constitutes the essential structure of chaos. Besides, chaotic
behavior has other important aspects as sensitive dependence to
initial conditions and ergodicity.

These aspects of chaos may be exploited in order to design
dynamical systems that may quickly react to some new situation,
changing conditions and their response. Under this condition, a
dynamical system adopting chaotic regimes becomes interesting
due to the wide range of potential behaviors being related to a
flexible design. The idea that chaotic behavior may be controlled
by small perturbations applied in some system parameters allows
this kind of behavior to be desirable in different applications.

In brief, chaos control methods may be classified as discrete and
continuous methods. Semi-continuous method is a class of discrete
method that lies between discrete and continuous method. The

pioneer work of Ott et al. [27] introduced the basic idea of chaos
control proposing the discrete OGY method. Afterwards, Hübinger
et al. [20] proposed a variation of the OGY technique considering
semi-continuous actuations in order to improve the original
method capacity to stabilize unstable orbits. Pyragas [29] proposed
a continuous method that stabilizes UPOs by a feedback perturba-
tion proportional to the difference between the present and a
delayed state of the system.

This article deals with a comparative analysis of chaos control
methods that are classified as follows: OGY methods – include
discrete and semi-continuous approaches [27,20]; multiparameter
methods – also include discrete and semi-continuous approaches
[10,11]; and time-delayed feedback methods that are continuous
approaches [29,34]. Fig. 1 presents an overview of chaos control
methods analyzed in this work.

Many research efforts were presented in literature in order to
improve the originals chaos control techniques and there are
numerous review papers concerning these procedures. In this
regard, Shinbrot et al. [33], Ditto et al. [14], Grebogi and Lai [18]
and Dubé and Després [15] discussed concepts of chaos and its
control presenting discrete chaos control techniques based on OGY
method. Pyragas [30] presented an overview of continuous chaos
control methods based on time-delayed feedback and mentioned
several numerical and experimental applications. Ogorzalek [25],
Arecchi et al. [3] and Fradkov and Evans [16] presented review
articles that furnish a general overview of chaos control methods,
including discrete and continuous techniques. Besides these meth-
ods, Boccaletti et al. [6] also treated tracking and synchronization
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of chaotic systems and mentioned several experimental imple-
mentations. Andrievskii and Fradkov [1] discussed several methods
for controlling chaotic systems including chaos control techniques
and traditional control methods, while Andrievskii and Fradkov [2]
mentioned several works that apply these control procedures to
numerous systems of different fields. Fradkov et al. [17] and Savi
et al. [32] presented reviews focused on chaos control methods
applied to mechanical systems.

Recently, different approaches are being employed in order to
stabilize chaotic behavior. In this regard, Kapitaniak [22] applied
non-feedback methods by adding a controller, which consists in a
linear oscillator, to the dynamical system with the help of
coupling elements. Chen [7] presented the design of linear and
non-linear conventional feedback controllers based on Lyapunov
function methods in other to stabilize chaotic behavior. Bessa
et al. [5] proposed an adaptive fuzzy sliding mode strategy
enhanced by an adaptive fuzzy algorithm to cope with modeling
inaccuracies. The method is applied in order to stabilize UPOs
embedded in chaotic response as well as generic orbits.

Despite the numerous review papers concerning the control of
chaos, there is a lack of reports that present a comparative
analysis of the control strategies, which is the main goal of this
contribution. The capability of the chaos control methods to
stabilize a desired UPO is analyzed in this paper. A mechanical
system is of concern as an application of the general procedure
and all signals are generated by numerical integration of a
mathematical model, using experimentally identified parameters.
In order to consider a system with high instability, a non-linear
pendulum treated in other references is considered [11,12,28].
Noise influence is treated by considering signals with observation
noise. Results show the performance of each method to stabilize
desired orbits exploring some limitations and its application.

The paper is organized as follows. Initially, a brief introduction
of chaos control methods is presented. Afterwards, a comparative
study is carried out by defining some control rules that should
be followed by each controller. Noise influence is treated in the
sequence showing the robustness of each controller. Finally, the
paper presents the concluding remarks.

2. Chaos control methods

The control of chaos can be treated as a two-stage process. The
first stage is called learning stage where the UPOs are identified
and system parameters necessary for control purposes are chosen.
A good alternative for the UPO identification is the close return
method [4]. This identification is not related to the knowledge of
the system dynamics details being possible to use time series
analysis. The estimation of system parameters is done in different
ways for discrete and continuous methods. After the learning
stage, the second stage starts promoting the UPO stabilization

employing chaos control methods that are discussed in this
section.

2.1. OGY method

The OGY method [27] is described by considering a discrete
system of the form of a map xnþ1

¼ Fðxn,pnÞ, where pAR is an
accessible parameter for control. This is equivalent to a parameter
dependent map associated with a general surface, usually a
Poincaré section. Let xnþ1

C ¼ Fðxn
C ,p0Þ denotes the unstable fixed

point on this section corresponding to an unstable periodic orbit
in the chaotic attractor that one wants to stabilize. Basically, the
control idea is to monitor the system dynamics until the neigh-
borhood of this point is reached. When this happens, a proper
small change in the parameter p causes the next state xnþ1 to fall
into the stable direction of the fixed point. In order to find the
proper variation in the control parameter, dp, it is considered a
linearized version of the dynamical system in the neighborhood
of the equilibrium point given by Eq. (1). The linearization has a
homeomorphism with the non-linear problem that is assured by
the Hartman–Grobman theorem [19,36,21,35,31]:

Dxnþ1
¼ JnDxn

þwnDpn ð1Þ

where Dxn
¼ xn
�xn

C , Dxnþ1
¼ xnþ1

�xnþ1
C , and Dpn ¼ pn�p0.

Jn ¼Dxn Fðxn,PnÞ9xn
¼ xn

C ,Pn ¼ P0
is the Jacobian matrix and

wn ¼Dpn Fðxn, pnÞ9xn
¼ xn

C ,pn ¼ p0
is the sensitivity vector.

Fig. 2 presents a schematic picture that allows a geometrical
comprehension of the stabilization process. Since the chaotic
behavior is related to a saddle point, it is possible to visualize
this stabilization over a saddle.

Hübinger et al. [20] verified that the linear mapping Jn deforms
a sphere around xn

C into an ellipsoid around xnþ1
C . Therefore, a

singular value decomposition (SVD) can be employed in order to
determine the unstable and stable directions, vn

u and vn
s , in Sn

which are mapped onto the largest, sn
uun

u, and shortest, sn
s un

s ,
semi-axis of the ellipsoid in Snþ1, respectively. Here, sn

u and sn
s

are the singular values of Jn:

Jn ¼UnWnðVnÞ
T
¼ un

u un
s

n o sn
u 0

0 sn
s

" #
vn

u vn
s

n oT
ð2Þ

Korte et al. [23] established the control target as being the
adjustment of dpn such that the direction vnþ1

s on the map nþ1 is
obtained, resulting in a maximal shrinking on map nþ2. There-
fore, it demands Dxnþ1

¼ avnþ1
s , where aAR. Hence

JnDxn
þwnDpn ¼ avnþ1

s ð3Þ

from which a and dpn can be conveniently chosen.
The OGY method can be employed even in situations where

a mathematical model is not available. Under this situation, all
parameters can be extracted from time series analysis. The

Fig. 1. Chaos control methods.
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