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a b s t r a c t

We study the finite plane deformations of a particular harmonic material surrounding an elliptical hole

whose boundary incorporates the contribution of surface mechanics. We are particularly interested in

the distribution of the Piola hoop stress along the edge of the hole. Surprisingly, in the absence of any

external loading, the hoop stress induced solely by the surface effects is identical to that in the

corresponding case in a linearly elastic solid. In addition, we show that even in the presence of surface

effects, we can nevertheless design a so-called ‘harmonic hole’ where the Piola mean stress remains

constant everywhere in the surrounding solid. In this case, however, the hoop stress is no longer

constant along the edge of the elliptical hole due to the contribution from surface energy.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Micromechanical analysis of composites is fundamental to a
better understanding of the local and overall behavior of compo-
site materials. In structures analyzed at the nanoscale, the surface
to volume ratio becomes sufficiently high to require the
incorporation of surface energy into any continuum model of
deformation. Gurtin and co-workers [1,2] first proposed a surface
elasticity model to account for the contribution from surface
energies. The theory behind this model was further improved and
clarified by Ru in [3]. Recently, variations of the surface elasticity
model have been incorporated into several interesting and chal-
lenging problems in micromechanics including the analysis of
nano-composites containing Eshelby’s inclusions, inhomogene-
ities, cavities and cracks [4–10]. In all of these previous studies,
the bulk material has been assumed to be linearly elastic mainly
in an effort to avoid the formidable analytical challenges pre-
sented by the theory of non-linear elasticity.

Fortunately, an elegant and powerful complex variable for-
mulation for plain-strain finite deformations of a particular set of
compressible hyperelastic materials of harmonic type has been
developed by Ru [11]. This new complex variable formulation
has been employed successfully to study various crack and
inclusion problems in harmonic solids [11–14] undergoing finite

deformations. In this paper, we adopt Ru’s formulation and
present the analysis of the contribution of surface energy to a
bulk harmonic solid surrounding an elliptical nano-hole subjected
to finite deformation.

2. Basic formulation

2.1. Complex variable formulation for a harmonic solid

Let the complex variable z¼x1þ ix2 be the initial coordinates of
a material particle in the undeformed configuration and w(z)¼
y1(z)þ iy2(z) the corresponding spatial coordinates in the
deformed configuration. Define the deformation gradient tensor
as having components

Fij ¼
@yi

@xj
: ð1Þ

For a particular class of harmonic materials, the strain energy
density W defined with respect to the undeformed unit area can
be expressed by

W ¼ 2m½FðIÞ�J�, F 0ðIÞ ¼ 1=4a½Iþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
�16ab

q
�: ð2Þ

Here I and J are the scalar invariants of FFT given by

I¼ l1þl2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FijFijþ2J

q
, J¼ l1l2 ¼ det½Fij�, ð3Þ

where l1 and l2 are the principal stretches, m is the shear
modulus and 1/2rao1, b40 are the two material constants.
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Despite its limitations (for example, this model is not suitable in
cases when the solid is subjected to significant compression), this
special class of harmonic materials has attracted considerable
attention in the literature [12–19].

According to the formulation developed recently by Ru [11],
the deformation w can be written in terms of two analytic
functions j(z) and c(z) as

iwðz,zÞ ¼ ajðzÞþ icðzÞþ
bz

j0ðzÞ
, ð4Þ

and the complex Piola stress function F is given by

Fðz,zÞ ¼ 2im ða�1ÞjðzÞþ icðzÞþ
bz

j0ðzÞ

� �
: ð5Þ

In addition, the Piola stress components can be written in
terms of the Piola stress function F as

�s21þ is11 ¼F,2, s22�is12 ¼F,1: ð6Þ

2.2. Surface elasticity theory

Using the concept of surface stress, the boundary condition on
the surface is given by [1–3,10]

sajnjeaþs
s
ab,bea ¼ 0 ðtangential directionÞ

sijninj ¼ ss
abkab ðnormal directionÞ ð7Þ

where ni is the unit normal vector of the surface, ss
ab is the (2�2)

symmetric surface stress tensor, and kab is the curvature tensor of
the surface.

In the theory of surface elasticity [6,8,9], the surface stress
tensor ss

ab is related to the deformation dependent surface energy
g. In this study, we proceed as in [6,8,9] and consider only the
simple case in which the surface energy is independent of the
deformation. Consequently the surface stress tensor can be
simply expressed in terms of the surface energy as

ss
ab ¼ gdab, ð8Þ

which implies that the surface is isotropic [6,8].

3. An elliptical hole with surface energy in a harmonic solid

Consider a harmonic solid containing an elliptical hole whose
boundary is assumed to incorporate surface effects through the
surface elasticity theory described above. We further assume that
the solid is subjected to a uniform Piola stress field
ðs111,s122,s112,s121Þ at infinity. The boundary of the elliptical hole
is described by G : fx2

1=a2þx2
2=b2
¼ 1g where a and b are, respec-

tively, the semi-major and semi-minor axes. We introduce the
following conformal mapping function:

z¼ x1þ ix2 ¼oðxÞ ¼ R xþ
m

x

� �
, ð9Þ

where

R¼
aþb

2
, m¼

a�b

aþb
: ð10Þ

This mapping maps the unbounded region outside the ellip-
tical hole in the z-plane onto the exterior of unit circle 9x9Z1 in
the x-plane.

It follows from Eqs. (7) and (8) that the boundary condition on
the surface of the elliptical hole with surface energy can be
written explicitly as

snnþ isnt ¼
g
r

, ð11Þ

where the subscripts n and t denote the normal and tangential
directions of the elliptical boundary, respectively, and r denotes
the radius of curvature of the elliptical hole and is given by ([9])

r¼ R 1�
m

x2

 !3=2

ð1�mx2
Þ
3=2
ð1�m2Þ

�1 on x¼ eiy ð12Þ

The boundary condition (11) can be written in terms of the
two analytic functions j(x)¼j(o(x)) and c(x)¼c(o(x)) as

2im ða�1ÞjðxÞþ icðxÞþ
boðxÞo0ðxÞ

j0ðxÞ

" #
¼FGðxÞ on x¼ eiy ð13Þ

where

FGðxÞ ¼ F0ðxÞ ¼ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
�m

1�mx2

s
, ð14Þ

which indicates that FG(x)�F0(x) defined in Eq. (17) by Wang and
Wang [9].

Using the method of analytic continuation, Eq. (13) can be
solved for the two analytic functions j(x) and c(x) as follows:

jðxÞ ¼ iðBRþðbRm=AÞÞ

1�a
x�1
þ iARx,

cðxÞ ¼�
g

2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�mx2

x2
�m

s
þARð1�aÞx�1

�
½AbRð1�aÞð1�m2ÞþbRmðBþðbm=AÞÞ�x2

�AbRmð1�aÞ
A2
ð1�aÞx3

�AðBþðbm=AÞÞx
þBRx,

ð15Þ

where A and B are complex constants determined by the remote
uniform Piola stresses ðs111,s122,s112,s121Þ such that

ð1�aÞA�b
A
¼
s111þs122þ iðs121�s112Þ

4m , B¼
s111�s122�iðs112þs121Þ

4m :

ð16Þ

In view of the fact that the Piola mean stress is determined by

s11þs22 ¼ 4m Im ð1�aÞj
0ðxÞ

o0ðxÞ þ
bo0ðxÞ
j0ðxÞ

� �
, ð17Þ

the surface energy does not contribute to the distribution of the
Piola mean stress in the harmonic solid. In other words, the Piola
mean stress in the harmonic solid is solely induced by the applied
remote uniform Piola stresses.

In addition, in order to ensure that F0(I)a0 outside the
elliptical hole, we must have that [12]

Að1�aÞx2aBþ
bm

A
ð9x9Z1Þ ð18Þ

Consequently the following inequality must hold for the two
loading parameters A and B:

ð1�aÞ9A94 Bþ
bm

A

				
				: ð19Þ

Remark. F0(I)a0 guarantees strong ellipticity of the associated
system and is necessary in order to arrive at a general solution of
the deformation wðz,zÞ in Eq. (4) (see Ref. [11] for more details).

In the next section, several special cases will be discussed to
more clearly illustrate the general solution obtained above.
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