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a b s t r a c t

In this communication some non-linear flow problems dealing with the unsteady flow of a third grade
fluid in porous half-space are analyzed. A new class of closed-form conditionally invariant solutions for
these flow models are constructed by using the conditional or non-classical symmetry approach. All
possible non-classical symmetries of the model equations are obtained and various new classically
invariant solutions have been constructed. The solutions are valid for a half-space and also satisfy the
physically relevant initial and the boundary conditions.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

During the past several decades, the study of non-linear
problems dealing with flow models of non-Newtonian fluids has
gained prodigious attention. This interest is due to several impor-
tant applications in engineering and industry such as aerodynamic
heating, electrostatic precipitation, petroleum industry, reactive
polymer flows in heterogeneous porous media, electrochemical
generation of elemental bromine in porous electrode systems,
manufacture of intumescent paints for fire safety applications,
extraction of crude oil from petroleum products, synthetic fibers,
paper production and so forth. Due to the intricate microstructure
of non-Newtonian fluids, there is no single constitutive expression
available in the literature which describes the physical behavior
and properties of all non-Newtonian fluid models. Because of this,
several models of non-Newtonian fluids have been proposed. The
mathematical modeling of non-Newtonian incompressible fluid
flows gives rise to complicated non-linear differential equations.
The situation becomes more involved when we consider exact
(closed-form) solutions of these problems. Several techniques and
methods have been developed recently to construct solutions of
non-Newtonian fluid flow problems. Some of these useful methods
are the variational iteration method, Adomian decomposition
method, homotopy perturbation method, homotopy analysis
method, semi-inverse variational method and symmetry method.

Despite all these methods, exact (closed-form) solutions of non-
Newtonian fluid flow problems are still rare in the literature and it
is not surprising that new exact (closed-form) solutions are
most welcome provided they correspond to physically realistic
situations.

Amongst the many models which have been used to describe
the physical flow behavior of non-Newtonian fluids, the fluids of
differential type have received special attention as well as much
controversy, see for example [1] for a complete discussion of the
relevant issues. Rivlin–Ericksen fluids of differential type have
secured special attention in order to describe several non-standard
characteristics of non-Newtonian fluids such as rod climbing,
shear thinning, shear thickening and normal stress effects. Litera-
ture surveys point out that much focus has been given to the flow
problems of a non-Newtonian second grade fluid model [2].
A second grade fluid model is the simplest subclass of differential
type fluids for which one can reasonably hope to establish an
analytic result. In most of the flow aspects, the governing equa-
tions for a second grade fluid are linear. Although a second grade
fluid model for steady flows is used to predict the normal stress
differences, it does not correspond to shear thinning or thickening
if the shear viscosity is assumed to be constant. Therefore some
experiments may be better described by a third grade fluid. The
mathematical model of a third grade fluid represents a more
realistic description of the behavior of non-Newtonian fluids.
A third grade fluid model represents a further attempt toward
the study of the flow structure of non-Newtonian fluids. Therefore,
a third grade fluid model is considered in this study. This model is
known to capture the non-Newtonian effects such as shear
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thinning or shear thickening as well as normal stress. The
governing equations for the third grade fluid model are non-
linear and much more complicated than those of Newtonian fluids.
They require additional boundary conditions to obtain a physically
meaningful solution. This issue has been discussed in detail by
Rajagopal [3,4] and Rajagopal and Kaloni [5]. Fosdick and
Rajagopal [6] made a complete thermodynamical analysis of a third
grade fluid and derived the restriction on the stress constitutive
equation. They investigated some stability characteristics of third
grade fluids and showed that they exhibit features different from
those of Newtonian and second grade fluids. Further, one can refer
to the important works of Ariel [7], Akyildiz [8,9], Sahoo [10],
Aksoy and Pakdemirli [11], Makinde [12], Passerini and Patria [13],
Mollica and Rajagopal [14], Rajagopal and Na [15] and Rajagopal
[16] regarding the flow of a third grade fluid.

The present paper continues the research which was carried
out in [17–19]. In Hayat et al. [17], some classically invariant
solutions were obtained for unsteady flow of a third grade fluid in
a porous medium. In [18], the analysis of [17] was extended by
taking into account the magnetohydrodynamic (MHD) nature of
the fluid. We also utilized the Lie classical symmetry approach to
construct a new class of group invariant solutions for the govern-
ing non-linear partial differential equation. Aziz and Aziz [19]
recently extended the flow model of [18] by including suction and
injection at the boundary of the flow. The same group theoretic
approach has been used to obtain closed-form invariant solutions
of the non-linear boundary-value problem. In this work, we revisit
these three flow problems. A conditional symmetry approach is
employed to construct some new exact solutions of these models.
The conditional symmetry or non-classical symmetry approach
has its origin in the work of Bluman and Cole [20]. In recent years,
interest in the conditional symmetry approach has increased.
Information on the non-classical method and related topics can
be found in [21–24]. This method has also been used to obtain new
exact solutions of a number of interesting non-linear partial
differential equations [25–30]. There are equations arising in
applications that do not admit classical symmetries but have
conditional symmetries. Thus this method is useful in constructing
exact solutions. The concept of conditional/non-classical symme-
try has not been used to find conditionally-invariant solutions of
non-Newtonian fluid flow problems. This is the first time that the
conditional symmetry approach has been employed to tackle non-
linear problems dealing with the flow models of non-Newtonian
third grade fluids. We believe that these deserve further impor-
tance in tackling non-Newtonian fluid flow problems, which are
the main foci of this paper. A summary of the non-classical
symmetry method is presented in the Appendix.

2. Problem 1: Unsteady flow of a third grade fluid over a flat
rigid plate with porous medium

Hayat et al. [17] solved the time-dependent problem for the
flow of a third grade fluid in a porous half-space. The governing
non-linear partial differential equation in [17], with a slight change
of notation, is given by
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where uðy; tÞ is the velocity component, ρ is the density, μ the
coefficient of viscosity, α1 and β3 are the material constants (for
details on these material constants and the conditions that are

satisfied by these constants, the reader is referred to [6]), ϕ the
porosity and κ the permeability of the porous medium.

In order to solve the above Eq. (1), the relevant time and space
dependent velocity boundary conditions are specified as follows:

uð0; tÞ ¼ u0VðtÞ; t40; ð2Þ

uð∞; tÞ ¼ 0; t40; ð3Þ

uðy;0Þ ¼ gðyÞ; y40; ð4Þ
where u0 is the reference velocity. The first boundary condition (2)
is the no-slip condition and the second boundary condition (3)
says that the main stream velocity is zero. This is not a restrictive
assumption since we can always measure velocity relative to the
main stream. The initial condition (4) indicates that the fluid is
initially moving with some non-uniform velocity gðyÞ.

In [17], the governing problem was solved without transform-
ing the problem into dimensionless form. Here we first non-
dimensionalize the problem and then obtain solutions. Defining
the non-dimensional quantities as
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Eq. (1) and the corresponding initial and the boundary conditions
take the form
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uð0; tÞ ¼ VðtÞ; t40; ð7Þ

uðy; tÞ-0 as y-∞; t40; ð8Þ

uðy;0Þ ¼ gðyÞ; y40; ð9Þ
where Vð0Þ ¼ gð0Þ. For simplicity we suppress the bars of the non-
dimensional quantities. We rewrite Eq. (6) as
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where
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We solve Eq. (10) subject to the conditions (7)–(9).

2.1. Non-classical symmetry analysis

Here we present the complete non-classical symmetry analysis
of PDE (10) and develop some classically invariant solution of
Problem 1.

Consider the infinitesimal operator

χ ¼ ξ1ðt; y;uÞ ∂
∂t

þ ξ2ðt; y;uÞ ∂
∂y

þ ηðt; y;uÞ ∂
∂u

: ð12Þ

The invariant surface condition is

ϕðt; y;uÞ ¼ ηðt; y;uÞ−ξ1ðt; y;uÞ ∂u
∂t

−ξ2ðt; y;uÞ ∂u
∂y

¼ 0: ð13Þ

The non-classical symmetries determining equations are

χ½3�Eq:ð10ÞjEq:ð10Þ ¼ 0;ϕ ¼ 0 ¼ 0; ð14Þ
where χ½3� is the usual third prolongation of operator χ.

Here we find the determining equations for two different cases:
Case 1. When ξ1 ¼ 1 and ξ2≠0
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