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a b s t r a c t

Proper orthogonal decomposition results from subsonic and transonic flow regimes are presented, and
the full-order model is compared with the reduced-order models. The reduced-order models use basis
functions generated for on- and off-reference flow conditions. For on-reference flow conditions, proper
orthogonal decomposition of the full-order model is performed to generate the basis functions. For off-
reference flow conditions, basis functions are obtained through interpolating among basis functions
corresponding to bracketing flow conditions. Interpolation is performed on a tangent space to a
Grassmann manifold. This paper evaluates the accuracy of POD at off-reference flow conditions for
subsonic and transonic flow regimes. The results show that interpolation yields good results for the
subsonic cases, but the accuracy of the transonic cases is considerably lower. Furthermore, the energy
spectrum is used to assess the necessary number of basis functions. It is demonstrated that in order to
determine the number of basis functions, it is better to assess the variation of individual energy values, as
opposed to the cumulative energy values.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Despite continuous advances in computational power, the
scope of high-fidelity computational fluid dynamic (CFD) results
remains limited for applications requiring numerous repetitions.
Examples of such applications include parametric studies and
design iterations. This limited scope is particularly evident in
computational aeroelasticity, for which the costs associated with
unsteadiness of the flow and temporal variation of the mesh can
be a computational burden.

The computational cost of a CFD simulation can be drastically
reduced while providing high-fidelity results using reduced-order
models (ROMs). Through model reduction, dominant spatial
modes are used to describe the flow. The non-linear partial
differential equations can then be reduced to ordinary differential
equations from which the time coefficients that weight the spatial
modes are calculated. ROMs are often employed in structural
dynamics as well [1].

Proper orthogonal decomposition (POD) is a method through
which snapshots of the flow obtained from the full-order model
(FOM) are used to extract the optimal set of spatially dependent
basis functions [2]. The large set of partial differential equations is

then projected onto the basis functions, resulting in a much
smaller set of ordinary differential equations.

POD-based ROMs have been reviewed in [3–5]. The effects of
deforming meshes [6–8] and heaving airfoils [9] have been
considered. More recently, POD-based ROMs have been developed
for deformed wings [10].

Early POD-based ROMs focused on computing basis functions
directly from snapshots of a FOM for the same flow parameters as
the ROM [11]. This approach renders the computational savings of
the ROM moot. For practical applications, it is necessary to extend
the ROM to off-reference parameter sets [12].

Attempts to modify the POD basis functions to account for off-
reference flow parameters can be broadly broken into three
groups. The first approach is to directly interpolate between sets
of basis functions. This approach is simple to implement but
results in basis functions that are no longer orthogonal [13,14].

The second approach [15] augments the snapshot database with
solutions from a variety of parameters. These snapshots are then
used to compute POD basis functions directly. While this method
produces orthogonal basis functions, it still relies on a single set of
unchanging basis functions to span the entire parameter space.

The third approach is interpolation on a tangent space to a
Grassmann manifold [14,16]. This method has been shown to
produce good results over a wide range of parameters [14].
A special case of this method is subspace angle interpolation,
which considers interpolation between only two sets of basis
functions [13,17,18].
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In this paper, proper orthogonal decomposition results from
subsonic and transonic flow regimes are presented, and the full-
order model is compared with reduced-order models. The
reduced-order models use basis functions generated for on- and
off-reference flow conditions.

For on-reference flow conditions, proper orthogonal decom-
position of the full-order model is performed to generate the basis
functions. For off-reference flow conditions, basis functions are
obtained through interpolating among basis functions correspond-
ing to bracketing flow conditions. Interpolation is performed on a
tangent space to a Grassmann manifold.

This paper offers several valuable insights. POD results are
generated for several cases, and a comparison is made between
subsonic and transonic flows. Additionally, the effects of inter-
polation order when using a Grassmann manifold are investigated
for the different flow regimes. Furthermore, the energy spectrum
is used to assess the necessary number of basis functions. It is
demonstrated that in order to determine the number of basis
functions, it is better to assess the variation of individual energy
values, as opposed to the cumulative energy values.

2. Proper orthogonal decomposition

Proper orthogonal decomposition is a method through which
an optimal set of orthogonal spatial basis functions is extracted
from a set of data [2]. Typically, the mean is subtracted, and the
difference between the variable, Uðx,tÞ, and the time average, UðxÞ,
is approximated by a linear combination of the spatially depen-
dent basis functions, which are weighted by time-dependent
coefficients:

~Uðx,tÞ≡Uðx,tÞ−UðxÞ≈
Xm
j ¼ 1

ajðtÞφjðxÞ: ð1Þ

ajðtÞ ¼ ð ~Uðx,tÞ,φjðxÞÞ=ðφjðxÞ,φjðxÞÞ, and ð�,�Þ is the inner product. The
basis functions, φj, span a subspace of finite dimension m. Through
reduced-order modeling, the partial differential equations are
projected onto the set of basis functions and reduced to a system
of ordinary differential equations.

2.1. Optimality

The basis functions have been presumed mutually orthogonal
to more efficiently span the subspace. ~U is equal to the sum of the
approximation onto the basis and the error:
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Since the error is orthogonal to the approximation, the Pythagor-
ean theorem holds, and
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where ∥ � ∥ is the L2-norm. Consequently, minimizing the time-
averaged error is equivalent to maximizing the time-averaged
approximation. Due to the orthogonality assumption, the time-
averaged square of the norm of the approximation can be
simplified to

Xm
j ¼ 1

ð ~U,φjÞ
ðφj,φjÞ

φj
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¼
Xm
j ¼ 1

ð ~U,φjÞ2
ðφj,φjÞ

i,
*

where 〈 � 〉 denotes the time average.

The norm of the approximation is maximized by determining
the optimal basis functions that maximize the functional

J½φ�≡ ð ~U,φÞ2
φ,φð Þ i,

*
ð2Þ

where the subscript j has been removed for convenience. Eq. (2) is
extremized when

∂J
∂δ

½φþδψ�
���
δ ¼ 0

¼ 0¼ 2 ψT ÂðtÞφ−ð
~U,φÞ2
ðφ,φÞ ðψ ,φÞi,

*
ð3Þ

where ÂðtÞ≡ ~Uðx,tÞ⊗ ~Uðx,tÞ. The outer product is defined such that
ð ~U⊗ ~UÞφ≡ðφ, ~UÞ ~U. Eq. (3) must hold for an arbitrary ψ; therefore,

ÂðtÞφ−ð
~U,φÞ2
ðφ,φÞ φi ¼ 0:

*

Additionally, for a non-trivial solution for φ, it is necessary that

ÂðtÞ−ð
~U,φÞ2
ðφ,φÞ Ii

* �����¼ 0:

����� ð4Þ

Eq. (4) can be written equivalently as an eigenvalue problem,

〈Â〉φ¼ λφ, ð5Þ
where the eigenvalue

λ¼ ð ~U,φÞ2
ðφ,φÞ i:

*
ð6Þ

If φ is normalized so that ∥φ∥¼ 1, λ¼ 〈aðtÞ2〉. Consequently, the
eigenvectors with the largest eigenvalues are the most significant
basis functions. Additionally, since Â is symmetric positive semi-
definite, the eigenvectors are orthogonal.

2.2. Problem reduction

Assuming the number of snapshots, M, is less than the number
of unknown values in each snapshot, n, the eigenvalue problem
can be further simplified using the method of snapshots [19]. The
basis functions are expressed as linear combinations of the snap-
shots of ~U:

φjðxÞ ¼
XM
i ¼ 1

cjðtiÞ ~Uðx,tiÞ: ð7Þ

Substituting (7) into (5) yields a smaller eigenvalue problem

Bcj ¼ λjcj,

where

½B�i,k≡
1
M

ð ~Uðx,tkÞ, ~Uðx,tiÞÞ, fcjgi≡cjðtiÞ:

The size of the eigenvalue problem is thus reduced from n�n to
M�M.

2.3. Basis function interpolation

The ROM requires spatial functions, which have thus far been
the basis functions obtained from applying POD to the snapshots
generated by the FOM. Running the FOM for every ROM case is
counter to the motivation behind ROMs. Therefore, as an alter-
native, functions can be generated by interpolating between basis
functions corresponding to flow parameters that bracket the
conditions of interest. In this paper, the basis functions for off-
reference conditions are generated through interpolation on a
tangent space to a Grassmann manifold [14,16]. The resulting basis
functions are orthogonal.

For a set of L simulations corresponding to different flow
conditions parameterized by χ, a set of basis functions,
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