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In the present paper, we study a non-linear reaction–diffusion equation, which can be considered as a

generalized Fisher equation. An exact solution and traveling wave solutions to the generalized Fisher

equation are obtained by means of the Cole–Hopf transformation and the Lie symmetry method.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The problems of the propagation of non-linear waves have
fascinated scientists for over two hundred years [1,2]. Modern
theories describe non-linear waves and coherent structures in a
diverse variety of fields, including general relativity, high energy
particle physics, plasmas, atmosphere and oceans, animal
dispersal, random media, chemical reactions, biology, non-linear
electrical circuits, and non-linear optics. Nowadays it has been
universally acknowledged in the physical, chemical and biological
communities that the reaction–diffusion equation plays an
important role in dissipative dynamical systems. Typical exam-
ples are provided by the fact that there are many phenomena in
biology where a key element or precursor of a developmental
process seems to be the appearance of a traveling wave of
chemical concentration (or mechanical deformation). When
reaction kinetics and diffusion are coupled, traveling waves of
chemical concentration can effect a biochemical change much
faster than straight diffusional processes. This usually gives rise to
reaction–diffusion equations which in one dimensional space

takes the form

@u

@t
¼ k0

@2u

@x2
þFðuÞ, ð1Þ

for a chemical concentration u, where k0 is the diffusion
coefficient, and f(u) represents the kinetics.

When F(u) is linear, i.e., F(u)¼k2u+k1, where both k1 and k2 are
constants, then in many instances Eq. (1) can be solved by the
separation of variables methods. However if, as in many of the
applications considered in [3], F(u) is non-linear, then the problem
is much more intractable. Indeed, it is not usually possible to
obtain general exact analytical traveling wave solutions and one
must analyze such problems numerically [4]. Despite this,
however, under some particular circumstances, many non-linear
evolutionary equations have traveling wave solutions of special
types, which are of fundamental importance to our understanding
of biological phenomena modeled evolutionary equations. The
classic and simplest case of the non-linear reaction–diffusion
equation is when F(u)¼k3u(1�u), which is the so-called Fisher
equation. It was suggested by Fisher as a deterministic version of
a stochastic model for the spatial spread of a favored gene in a
population [5]. (Although this equation is now referred to as the
Fisher equation, the discovery, investigation and analysis of
traveling waves in chemical reactions was first presented by
Luther at a conference [6]. There, he stated that the wave speed is
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a simple consequence of the differential equations. This recently
re-discovered paper has been translated into English by Arnold
et al. [7] and Luther’s remarkable discovery and analysis of
chemical waves has been put in a modern context by Showalter
and Tyson [8].) In the 20th century, the Fisher equation has
became the basis for a variety of models for spatial spread. The
typical examples are that Aoki discussed gene-culture waves of
advance [9] and Ammerman and Cavali-Sforza, in an interesting
direct application of the model, applied it to the spread of early
farming in Europe [10,11]. Meanwhile, the qualitative analysis in
the phase plane and traveling wave solutions of the Fisher
equation have been widely investigated. The seminal and now
classical references are that by Kolmogorov, Petrovsky and
Piscunov [12], Albowitz and Zeppetella [13], Fife [14] and Britten
[15]. In [12], Kolmogorov et al. showed that any initial
concentration which is one for large negative spatial variable x

and vanishes for large x, evolves to a traveling wavefront with
minimal velocity v¼ 2

ffiffiffiffiffi
k0

p
. Different initial values propagate with

different traveling waves, depending on the behavior at x-71.
The first explicit analytic form of a cline solution for the Fisher
equation was obtained by Albowitz and Zeppetella making use of
the Painlevé analysis [13]. A full discussion of this equation and an
extensive bibliography can be seen in [14,15]. The singular
property, auto-Bäcklund transformation and analytic solutions
including some heteroclinic and homoclinic solutions of the
Fisher equation were obtained by Guo and Chen via the expanded
Painlevé for carrier flow equation in semiconductor devices
[16,17]. A discrete singular convolution algorithm was introduced
to solve Fisher’s equation and predicted long-time traveling wave
behavior by Zhao and Wei [18].

In the present work, we consider Eq. (1) with
FðuÞ ¼ uðmþbu�gu2Þ, namely

@u

@t
¼ a @

2u

@x2
þuðmþbu�gu2Þ, ð2Þ

where a, b, m and g are real constants. This equation can be
regarded as a generalization of the Fisher equation, which is used
as a density-dependent diffusion model, in the one-dimensional
situation, for studying insect and animal dispersal with growth
dynamics [3], and as a genetic model arising from the classical
theory of population genetics and combustion [19,20]. During the
past decade, considerable attention has been received to exact
solutions and traveling wave solutions of some special cases of
Eq. (2). When b¼ 0, exact solutions were obtained by Clarkson
and Mansfield [21] using the non-classical method. When both
b and g are non-zero, exact solutions of Eq. (2) have been found by
Chen and Guo using a truncated Painlevé expansion [22], by
Chowdhury [23] and Estévez and Gordoa [24] using a complete
Painlevé test, and by Clarkson and Mansfield [21]. More profound
results have been established by Clarkson and Mansfield making
use of the non-classical reductions method [25]. Herrera et al. [26]
obtained traveling wave solutions of (2) when p¼2 in their
equations. Kudryashov [27] derived an exact solitary wave
solution to Eq. (2) by utilizing the Riccati equation and the Jacobi
elliptic function. The study of the properties of the traveling
waves and their applications were undertook by de Pablo and
Sanchez [28]. Note that since two non-linearities occur in Eq. (2),
in general it is not integrable. Therefore, to seek exact solutions of
Eq. (2), qualitative analysis together with ingenious mathematical
techniques for treating such non-linear system appears to be
more powerful and important. Recently, qualitative results for
some physical and biological systems have been studied
extensively [29–32] and some innovative mathematical
methods, such as the Lie group analysis and symmetry method
have been developed and widely applied to many non-linear
systems [33–35].

Our goal in this paper is to find exact solutions and traveling
wave solutions to Eq. (2) under certain parametric conditions. The
rest of the paper is organized as follows. In Section 2, we consider
a special case of Eq. (2) where m¼ 0. A traveling wave solution is
found by utilizing the Cole–Hopf transformation, and an exact
solution is presented by means of the Lie symmetry method. In
Section 3, we focus on traveling wave solutions in terms of elliptic
functions for Eq. (2). Section 4 is a brief conclusion.

2. Exact solution in the case l¼ 0

In this section we mainly study exact solutions for Eq. (2)
when m¼ 0. Make a Cole–Hopf transformation:

u¼ RðlnpÞx, ð3Þ

where R is a real constant, and p is a function of x and t to be
determined. Substitution of (3) into Eq. (2) yields

3pxpxxp2�pxptp
2�pxxxp3�2ðpxÞ

3pþpxtp
3�RbðpxÞ

2p2þR2gðpxÞ
3p¼ 0:

ð4Þ

To reduce (4) to a bilinear equation as follows, we set R¼ 7
ffiffiffiffiffiffiffiffi
2=g

p
3pxpxx�pxpt�pxxxpþpxtp�RbðpxÞ

2
¼ 0: ð5Þ

Assume that Eq. (5) admits the solution of the form

pðx,tÞ ¼ k1eðm1xþn1tÞ þk2 � e
ðm2xþn2tÞ þk3 � e

ðm3xþn3tÞ, ð6Þ

where ki (i¼1, 2, 3), and mj and nj (i¼1, 2, 3) are constants.
Substituting (6) into (5) and equating the corresponding
coefficients of the resulting exponential functions, we get an
algebraic system

3mimjðmiþmjÞ�ðmiÞ
3
�ðmjÞ

3
�2Rbmimj

þðni�njÞðmi�mjÞ ¼ 0 ð1r io jr3Þ,

2ðmqÞ
3
�RbðmqÞ

2
¼ 0 ð1rqr3Þ:

8>><
>>: ð7Þ

System (7) can be solved with the aid of Maple. Changing to our
original variables, we obtain that Eq. (2) has exact solutions as

u1ðx,tÞ ¼
b
g �

k2 � e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2=2agÞ
p

xþðb2=2gÞt

k2 � e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2=2agÞ
p

xþðb2=2gÞtþðk1þk3Þ

¼
b
g �

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2=2agÞ
p

xþðb2=2gÞt

e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2=2agÞ
p

xþðb2=2gÞtþC1

, ð8Þ

and

u2ðx,tÞ ¼
b
g
�

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2=2agÞ
p

xþðb2=2gÞt

e�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2=2agÞ
p

xþðb2=2gÞtþC2

, ð9Þ

where C1 and C2 are arbitrary. Note that (8) and (9) are actually
traveling wave solutions. When both C1 and C2 are positive,
u1(x, t) and u2(x, t) each describe a kind-profile traveling wave (see
Fig. 1). These two solutions are monotone with respect to

x¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2=2agÞ

q
xþðb2=2gÞt. They are analytic on the whole

(x, t)-plane, but blow up at infinite points of (x, t) when both C1

and C2 are negative.
Now let us briefly state the general idea of the Lie symmetry

method for partial differential equations (PDEs) [33–35]. Here we
only consider PDEs with one dependent variable u and two
independent variables x and t. A point transformation is a
diffeomorphism

T : ðx,t,uÞ/ð ~xðx,t,uÞ, ~tðx,t,uÞ, ~uðx,t,uÞÞ,

which maps the surface u¼u(x, t) to the surface

~x ¼ ~xðx,t,uðx,tÞÞ, ~t ¼ ~tðx,t,uðx,tÞÞ, ~u ¼ ~uðx,t,uðx,tÞÞ: ð10Þ
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