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a b s t r a c t

In this paper we solve the common nonlinear boundary value problems (BVPs) of cantilever-type

micro-electromechanical system (MEMS) and nano-electromechanical system (NEMS) using the

distributed parameter model by the Duan–Rach modified Adomian decomposition method (ADM).

The nonlinear BVPs that are investigated include the cases of the single and double cantilever-type

geometries under the influence of the intermolecular van der Waals force and the quantum Casimir

force for appropriate distances of separation. The new Duan–Rach modified ADM transforms the

nonlinear BVP consisting of a nonlinear differential equation subject to appropriate boundary

conditions into an equivalent nonlinear Fredholm–Volterra integral equation before designing an

efficient recursion scheme to compute approximate analytic solutions without resort to any undeter-

mined coefficients. The new approach facilitates parametric analyses for such designs and the pull-in

parameters can be estimated by combining with the Padé approximant. We also consider the accuracy

and the rate of convergence for the solution approximants of the resulting Adomian decomposition

series, which demonstrates an approximate exponential rate of convergence. Furthermore we show

how to easily achieve an accelerated rate of convergence in the sequence of the Adomian approximate

solutions by applying Duan’s parametrized recursion scheme in computing the solution components.

Finally we compare the Duan–Rach modified recursion scheme in the ADM with the method of

undetermined coefficients in the ADM for solution of nonlinear BVPs to illustrate the advantages of our

new approach over prior art.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Beam-type electrostatic actuators have become one of the
common components in constructing micro-electromechanical
system (MEMS) and nano-electromechanical system (NEMS) [1].
A beam-type actuator is constructed from a conductive electrode
suspended over a conductive substrate. A voltage difference
between the two electrodes causes the upper movable electrode
to deflect towards the ground electrode. At a critical voltage the
movable electrode becomes unstable and pulls-in onto the sub-
strate. The parameters of the actuator in this state, such as the
voltage and deflection, are called the pull-in parameters.

The pull-in behavior of MEMS actuators has been previously
studied in [2,3]. The intermolecular and quantum forces were

neglected in these studies of micromechanical actuators on the
basis of physical scale.

With recent developments in nanotechnology, many research-
ers have focused on investigation of the effect of intermolecular
forces on the performance of electromechanical actuators. For
separations below 20 nm the force between two surfaces is
known as the intermolecular van der Waals attraction, which
varies as the inverse cube of the separation [4–6]. When the
separation is above 20 nm, the force between two surfaces can be
described by the quantum Casimir effect, which is proportional to
the inverse fourth power of the separation [6–11].

Beam-type NEMS actuators are modeled by a beam of length L

with a uniform rectangular cross section of width w and thickness
h, which is suspended over a conductive substrate and separated
by a dielectric spacer. They are classified as the cantilever NEMS
and the double cantilever NEMS according to the design of the
dielectric support structure; see figures in [2,9].

The governing equation for the distributed parameter
model, based on the Euler–Bernoulli beam assumptions, may be
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written as [6,9]

~EI
d4Y

dX4
¼ FelecþFK , ð1:1Þ

where Y is the deflection of the beam, X is the position along the
beam as measured from the clamped end, I is the moment of inertia
of the beam cross section, and ~E is the effective modulus. The
effective modulus ~E simply becomes Young’s modulus E for narrow
beams (wo5h) or the plate modulus E=ð1-n2Þ, where n is the
Poisson ratio, for wide beams (wZ5h). On the right side of Eq. (1.1),
Felec and FK ðK ¼ 3,4Þ are the electrostatic and intermolecular/
quantum forces per unit length of the beam, respectively. The van
der Waals force (F3) and the Casimir force (F4) are taken into account
considering their range of application. For this brief investigation,
we omit consideration of the transition regime.

The first-order fringing field correction of the electrostatic
force per unit length of the beam is

Felec ¼
e0wV2

2ðs-YÞ2
1þ

0:65ðs-YÞ

w

� �
, ð1:2Þ

where e0 ¼ 8:854� 10-12 C2 N-1 m-2 is the permittivity of vacuum,
V is the applied voltage and s is the original gap between the two
electrodes if there were no deflection.

The van der Waals force per unit length of the beam [4–6,12] is

F3 ¼
Aw

6pðs-YÞ3
, ð1:3Þ

where A is the Hamaker constant.
The Casimir force per unit length of the beam [8,9,13] is

F4 ¼
p2_vw

240ðs-YÞ4
, ð1:4Þ

where _¼ 1:055� 10-34 J s is the reduced Planck’s constant, a
measure of quantum action, and v¼ 2:998� 108 m s-1 is the
speed of light.

Substituting Eqs. (1.2), (1.3) and (1.4) into Eq. (1.1), and
introducing the dimensionless variables y¼Y/s and x¼X/L, we
transform the governing equation to the dimensionless form

d4y

dx4
¼

aK

ð1-yðxÞÞK
þ

b
ð1-yðxÞÞ2

þ
g

1-yðxÞ
, ð1:5Þ

where the index K equals 3 for the van der Waals force and 4 for
the Casimir force. The dimensionless parameters appearing in Eq.
(1.5) are

a3 ¼
L4Aw

6p ~EIs4
, a4 ¼

p2L4_vw

240 ~EIs5
, b¼

L4e0wV2

2 ~EIs3
, g¼ Zb¼ 0:65s

w
b:

The boundary conditions are

yð0Þ ¼ 0, y0ð0Þ ¼ 0, y00ð1Þ ¼ 0, y000ð1Þ ¼ 0, ð1:6Þ

for a cantilever NEMS and

yð0Þ ¼ 0, y0ð0Þ ¼ 0, yð1Þ ¼ 0, y0ð1Þ ¼ 0, ð1:7Þ

for a double cantilever NEMS.
Let uðxÞ ¼ 1-yðxÞ, then u(x) is the dimensionless gap between the

movable electrode and the substrate. We then rewrite Eq. (1.5) as

d4u

dx4
¼ -

aK

uðxÞK
-

b
uðxÞ2

-
g

uðxÞ
: ð1:8Þ

We remark that this trivial transformation is unnecessary in
the ADM, and have adopted it for convenience of comparison with
previously published solutions [9,14].

The boundary conditions are then

uð0Þ ¼ 1, u0ð0Þ ¼ 0, u00ð1Þ ¼ 0, u000ð1Þ ¼ 0, ð1:9Þ

for a cantilever NEMS and

uð0Þ ¼ 1, u0ð0Þ ¼ 0, uð1Þ ¼ 1, u0ð1Þ ¼ 0, ð1:10Þ

for a double cantilever NEMS.
We remark that when aK ¼ 0, Eq. (1.8) corresponds to the case

of the MEMS, i.e. the intermolecular and quantum forces are
neglected.

The boundary value problems (BVPs) for the MEMS and NEMS
have been previously solved by using the method of undeter-
mined coefficients to determine the constants of integration in
the Adomian decomposition method (ADM) [2,5,9,12,14–16]. The
aim of this paper is to solve the above model of the nonlinear
electrostatic NEMS by using the new Duan–Rach modification of
the ADM for solution of nonlinear BVPs [17].

The ADM is a practical technique for solving functional
equations. The method, which requires neither linearization nor
perturbation, efficiently works for a wide class of initial value
problems (IVPs) or BVPs, encompassing linear, nonlinear, and
even stochastic systems [18–33]. The method also does not resort
to the Green function concept, which greatly facilitates analytic
approximations and numerical computations [34–36].

The goal of the ADM is to provide a systematic approach for
approximate analytic solutions of nonlinear and stochastic opera-
tor equations, including differential, integral and integro-
differential equations. Furthermore we note that the ADM pro-
vides a convenient approach in computing the error analysis and
convergence analysis in the absence of a priori known exact
solutions, which is most often the case for nonlinear engineering
design problems, e.g. the error remainder function and the
maximal error remainder parameter, respectively; see Appendix
A. For a comprehensive bibliography and recent developments of
the ADM see [37,38].

The ADM decomposes the solution into a series

uðxÞ ¼
X1

m ¼ 0

umðxÞ,

where the components are determined by an appropriate recur-
sion scheme. The analytic nonlinearity NuðxÞ is decomposed into
a series of Adomian polynomials that are tailored to the specific
nonlinearity

NuðxÞ ¼
X1

m ¼ 0

AmðxÞ,

where the Adomian polynomials Am(x) only depend on the solution
components u0ðxÞ,u1ðxÞ, . . . ,umðxÞ, for which the definitional formula
was first published by Adomian and Rach in 1983 [18]:

AmðxÞ ¼
1

m!

@m

@lmN
X1
k ¼ 0

lkukðxÞ

 !�����
l ¼ 0

: ð1:11Þ

For convenient reference, we list the first five Adomian poly-
nomials for the simple nonlinearity NuðxÞ ¼ f ðuðxÞÞ,

A0 ¼ f ðu0Þ,

A1 ¼ f 0ðu0Þu1,

A2 ¼ f 0ðu0Þu2þ f 00ðu0Þ
u2

1

2!
,

A3 ¼ f 0ðu0Þu3þ f 00ðu0Þu1u2þ f 000ðu0Þ
u3

1

3!
,

A4 ¼ f 0ðu0Þu4þ f 00ðu0Þ
u2

2

2!
þu1u3

� �
þ f 000ðu0Þ

u2
1u2

2!
þ f ð4Þðu0Þ

u4
1

4!
:

Several algorithms [18,21,23,25,28,39–48] for symbolic program-
ming have since been devised to efficiently generate the Adomian
polynomials quickly and to high orders. For example, a conve-
nient formula for the Adomian polynomials is Rach’s Rule, which
reads [21, p. 16; 23, p. 51])
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