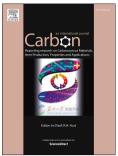
Accepted Manuscript

Preparation of boron-doped hydrothermal carbon from glucose for carbon paste electrode

Ana Kalijadis, Jelena Đorđević, Tatjana Trtić-Petrović, Marija Vukčević, Maja Popović, Vesna Maksimović, Zlatko Rakočević, Zoran Laušević

PII: S0008-6223(15)30135-4

DOI: 10.1016/j.carbon.2015.08.016


Reference: CARBON 10181

To appear in: Carbon

Received Date: 16 April 2015
Revised Date: 6 August 2015
Accepted Date: 7 August 2015

Please cite this article as: A. Kalijadis, J. Đorđević, T. Trtić-Petrović, M. Vukčević, M. Popović, V. Maksimović, Z. Rakočević, Z. Laušević, Preparation of boron-doped hydrothermal carbon from glucose for carbon paste electrode, Carbon (2015), doi: 10.1016/j.carbon.2015.08.016.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Preparation of boron-doped hydrothermal carbon from glucose for carbon paste electrode

Ana Kalijadis^{1*}, Jelena Đorđević¹, Tatjana Trtić-Petrović¹, Marija Vukčević², Maja Popović³, Vesna Maksimović⁴, Zlatko Rakočević³ and Zoran Laušević¹

Abstract

Boron doped hydrothermal carbon microspheres were synthesized by introducing boric acid into glucose precursor solution to obtain boron concentration from 0.1 to 1 wt. %. Following hydrothermal treatment, samples were thermally treated to 1000° C. For obtained samples structural and surface characterization were performed. Characterization of obtained samples as material for carbon paste electrode was achieved by measurement of the Fe (CN)₆^{3./4-} redox couple and linuron determination. Catalytic effect of boric acid on hydrothermal reaction induced enlargement of particle size for boron doped samples. Significant reduction of specific surface area for samples with highest boron concentration was observed. Boron was substitutionally incorporated in the structure of doped samples and incorporation up to 0.6 wt. % in precursor solution generates structure ordering, which induces a reduction of surface active sites for oxygen adsorption in a greater extent. It was found that modified structural and surface characteristics are responsible for good electron transfer property of carbon paste electrode based on doped samples with nominal boron concentration range from 0.2 to 0.6 wt. %. However, it has been shown that sample with nominal boron concentration of 0.2 wt. % proved to be most promising candidate as a material for carbon paste electrode.

¹Laboratory of Physics, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia

²Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia

³Laboratory of Atomic Physics, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia

⁴Materials Science Laboratory, Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia

^{*} Corresponding author. Tel.: +381 116454965 E-mail: anaudovicic@vinca.rs

Download English Version:

https://daneshyari.com/en/article/7850841

Download Persian Version:

https://daneshyari.com/article/7850841

<u>Daneshyari.com</u>