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a b s t r a c t

The intrinsic ripples of suspended graphene have attracted intensive attention due to their influence on
the electronic transport and other properties. Negative thermal expansion (NTE), another unconven-
tional phenomenon found in graphene, can be utilized to control the intrinsic ripples in a reversible way,
thus opening new perspective for application. In this case, understanding the mutual relation and
physical origin of the intrinsic ripples and NTE is crucial, especially since they are both widely observed
in other 2D materials. Here we clarify through lattice dynamical analysis that at low temperature the two
phenomena are both intrinsic for any 2D crystals with a honeycomb structure (or any monatomic 2D
crystals). We find that the intrinsic ripples, generally believed to be caused by thermal fluctuation, have
another origin that is the appearance of soft ZA modes near long wavelength limit when the lattice
constant is shortened. Moreover, the soft ZA modes and NTE have the same physical origin at low
temperature. At finite temperature, NTE is dominantly caused by the “vibrational elongation” effect
owing to large out-of-plane fluctuation according to our calculation based on self-consistent phonon
theory.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Uncovering the nature of its intrinsic ripples [1,2] is one of the
most challenging and vital problems concerning suspended gra-
phene. On one hand, its academic interest derives from the
PeierlseLandaueMermin argument, raised almost 80 years ago,
about the non-existence of low-dimensional crystalline state [3e5].
On the other hand, the crumpled morphology of a suspended
graphene has a profound impact on its physical properties,
including electronic transport [6e12], magnetoresistance [13],
mechanical strength [14], electromechanical coupling [15] and
chemical activity [16,17]. Currently, the spontaneous appearance of
ripples in graphene is attributed to several factors, including ther-
mal fluctuations [18,19], spontaneously and/or thermally generated
strains [20] and adsorbed OH molecules sitting on random sites
[21]. Despite these existing explanations, we believe that the ripple
problem for suspended graphene is still far from settled because of
many related yet unsolved issues. To name a few of these issues, the

spontaneous ripples found by Meyer et al. [1] in graphene are with
a size range of 50 e 100 Å, what factor determines this size and is it
controllable? Are the ripples randomly distributed or with a stable
pattern? Is the rippled state unique for graphene or is it a common
feature for any 2D materials?

Another unusual structural property of graphene is that it pos-
sesses NTE coefficient [22], which is also found in graphene oxide
[23,24]. Actually, before the experiments, the NTE coefficient of
graphene has been predicted and explained by using a theoretical
method combining first principle calculation and lattice dynamical
analysis [25]. Moreover, it is found that NTE can be used to control
the intrinsic ripples in a reversible way [20], which is of great
merits for exploration of new tunable graphene-based devices. At
this stage, it is natural to think that certain internal relation exists
between these two types of exotic structural properties of gra-
phene, which has never been truly understood.

In this work, we try to elucidate the relevance between the
intrinsic ripples and the NTE in graphene. By doing so, direct an-
swers or clues to the many unsolved issues concerning the intrinsic
ripples are obtained, as well as a deeper understanding of the origin
of the ripple formation and the NTE coefficient in graphene. The
discussion is divided into two parts: one for low temperature
condition where the effect of thermal fluctuation is neglected, and
the other for finite temperature condition where thermal fluctua-
tion is significant and even compatible with lattice spacing.
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2. Low-temperature analysis

At low temperature, according to the theory of lattice dynamics
in the harmonic approximation [26], the phonon frequencies are
determined by
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where εak(q, n) is polarization of the kth atom in the unit cell in the
a-axis direction of the nth branch of phonon with wave vector q,
and
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is the dynamical matrix. l0k0 is the lattice vector pointing to the unit
cell in which atom k0 is lying. In Eq. (2)
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where U ¼P
i
Fi denotes the total potential energy of the system,

and Fi is the potential energy possessed by the ith atom. The
subscript “0” means that the derivative takes value at equilibrium

lattice structure, and ua

�
0
k

�
denotes the ath component of the

displacement vector of the kth atom in the 0th unit cell.
A basic character of the vibrational motion of 2D materials is

that the restoring force for the out-of-plane motion is caused by
changes of bond angles [27]. This means that an effective descrip-
tion of the interatomic potential in this case has to be a multi-body
potential. For example, the carbonecarbon potential LCBOPⅡ [28]
describes the nearest neighbor interaction between carbon atoms
in graphene as a function of the bond length as well as four related
bond angles. Describing the system with LCBOPⅡ, the potential
energy possessed by the ith atom Fi takes the following form
[29,30].
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where qijk denotes the bond angle between neighboring bond rij
and rik (ks i, j). 41(rij, qijk), 42(rij) and 43(rij) denote respectively the

nearest neighbor interaction, the second nearest neighbor inter-
action and the third nearest neighbor interaction. Geometrically, rij

and qijk are both function of ua

�
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k
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and ub
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l0
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�
ða; b ¼ 1; 2; 3Þ.

Hence for any 2D lattice structure, the following expansion can
always be done concerning the second order derivative of the
nearest neighbor interaction 41(rij, qijk)

where rij ¼
		rij		. Eq. (5) expresses the force constants of the phonon

vibration by six derivatives of the potential (one should notice that

for k¼ l and k s l,
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correspond to two different

derivatives). The last five of these derivatives are closely related to
the macroscopic mechanical constants of grapheme [30].

For the second order derivative of the long-range interactions in
graphene, an expansion similar to Eq. (5) can be obtained as
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where m¼ 2, 3. The expansions in Eq. (5) and Eq. (6) are useful for
analyzing the phonon spectrum and related physical properties. For
graphene, we find that the first terms on the RHS of Eq. (5) and Eq.

(6) with the form ðv4k
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; ðk ¼ 1; 2; 3Þ (here-

after called the FOD terms) has a considerable effect on the phonon
spectrum and are crucial for the NTE of graphene in low
temperature range. Notice that the ground state lattice constant a0
(here we mean the equilibrium distance between the
nearest neighbors) for graphene is determined by
vFi
va ¼ 1
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where a is the nearest neighbor distance in graphene. To make the

sum of this three terms zero, ðv4k
va Þ0; ðk ¼ 1; 2; 3Þ are all nonzero

quantities even at ground state, which leads to nonvanishing FOD
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