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a b s t r a c t

The stationary response of Duffing oscillator with hardening stiffness and fractional derivative under

Gaussian white noise excitation is studied. First, the term associated with fractional derivative is

separated into the equivalent quasi-linear dissipative force and quasi-linear restoring force by using the

generalized harmonic balance technique, and the original system is replaced by an equivalent nonlinear

stochastic system without fractional derivative. Then, the stochastic averaging method of energy

envelope is applied to the equivalent nonlinear stochastic system to yield the averaged Itô equation of

energy envelope, from which the corresponding Fokker–Planck–Kolmogorov (FPK) equation is estab-

lished and solved to obtain the stationary probability densities of the energy envelope and the

amplitude envelope. The accuracy of the analytical results is validated by those from the Monte Carlo

simulation of original system.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the last several decades, fractional derivative-based techni-
que has been generally recognized as the well-established tool to
model the constitutive behavior of viscoelastic materials. In this
regard, original contribution was owed to Gemant [1], who
suggested a fractional derivative constitutive relationship to
model cyclic-deformation tests performed on viscoelastic mate-
rial specimens. Later, Caputo [2] reported experimental validity
when they used fractional derivatives for the description of the
behavior of viscoelastic materials. Moreover, Bagley and Torvik
[3] have provided the theoretical basis for the use of the fractional
derivative models to characterize viscoelasticity in the early
1980s. So far, many researchers such as Koh and Kelly [4], Markris
and Constantious [5], Pritz [6], Friedrich et al. [7], Mainardi [8],
Papoulia and Kelly [9], Rossikhin and Shitikova [10] have given
further insight into the potential of fractional derivative when
applied to the viscoelasticity modeling. In particular, Gorenflo and
Mainardi [11], Kempfle et al. [12], and Rossikhin and Shitikova
[13,14] have provided an excellent review of the research in
this field.

Parallelly, many authors have put forward the analysis solu-
tions of deterministic dynamic systems involving elements
described by fractional derivatives. Among them, Padovan and
Sawicki [15] discussed the long time behavior of Duffing oscillator
endowed with fractional derivative damping using perturbation
method and examined the influence of fractional order on the
frequency amplitude response behavior. Pa�lfalvi [16] provided a
computationally efficient solution method for the fractionally
damped vibration equation using the Adomian decomposition
method and Taylor series. Leung and Guo [17] proposed an
improved harmonic balance method for autonomous and non-
autonomous systems with fractional derivative damping and
examined the interaction among the excitation frequency, frac-
tional order, amplitude, phase angle and the frequency amplitude
response. Shen [18] studied the primary resonance of Duffing
oscillator with fractional derivative using standard averaging
method. They pointed out that the fractional derivative term
could both affect the viscous damping and the linear stiffness.
Kovacic and Zukovic [19] investigated the free oscillators with a
power-form restoring and fractional derivative damping using the
averaging method, with particular attention to the effects of
fractional derivative order on the amplitude and frequency of
oscillations.

Actually, stochastic perturbations are ubiquitous. So it is
necessary to compute the response to stochastic excitations. To
this aim, a frequency domain technique has been pursued by
Spanos and Zeldin [20] and Rüdinger [21]. Alternatively, a time
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domain Duhamel integral closed-form expression has been
obtained to analyze the stochastic response by using the Laplace
transform [22,23] technique or the Fourier transform [24] tech-
nique. Recently, a stochastic averaging method based on the
generalized harmonic function has been explored to investigate
the stochastic dynamics including response [25,26], first passage
failure [27], and stochastic stability [28] of strongly nonlinear
oscillators with fractional derivative damping. Furthermore,
Ref. [29] obtained a general frequency domain solution based
on statistical linearization; results were presented for a Duffing
oscillator with fractional derivative damping subjected to exter-
nal Gaussian white noise excitation [29]. Ref. [30] computed the
response a SDOF linear system with fractional derivative damping
subjected to stationary and non-stationary random excitations, in
which the key idea was generalized to the fractionally damped
Duffing oscillator subjected to a stochastic input [31].

In the preceding works on stochastic dynamics, however, the
term associated with the fractional derivative was simply con-
sidered as the special damping force. Note that the so-called
fractional derivative damping not only serves as the role of
classical damping force but also contributes to the elastic restor-
ing force [18,32]. Thus, simply considering the fractional deriva-
tive term as the dissipation force is insufficient or even incorrect.
In this paper, the stationary response of Duffing oscillator with
hardening stiffness and fractional derivative subjected to
Gaussian white noise excitation is investigated. The key idea is
to decouple the fractional derivative term into the equivalent
quasi-linear dissipative force and quasi-linear restoring force
based on the generalized harmonic balance technique and to
apply the stochastic averaging method of energy envelope to the
equivalent nonlinear stochastic system without fractional deriva-
tive. Some parameters including the order of fractional derivative,
the magnitude of non-linearity, the coefficient of fractional
derivative term and the intensity of excitation are examined.
The analytical results are compared to the Monte Carlo simulation
data and the old analytical results [25].

2. Equivalent nonlinear stochastic system

Consider a Duffing oscillator with hardening stiffness and
fractional derivative under stochastic excitation as shown in
Fig. 1. The motion of the system is governed by

m €X ðtÞþc _X ðtÞþkXðtÞþwDaXðtÞ ¼ xðtÞ ð1Þ

where X(t) is the displacement; m, c, k¼k0þk1x2(t) are mass,
damping and hardening spring, respectively; m, c, k0 and k1 are all
positive parameters. DaX(t) denotes the fractional derivative
operation of Riemann–Liouville’s definition, i.e.,

DaXðtÞ ¼
1

Gð1�aÞ
d

dt

Z t

0

Xðt�tÞ
ta dt; 0oar1 ð2Þ

x(t) is a stationary Gaussian white noise with correlation
function E[x(t)x(tþt)]¼2D1d(t).

Using the following transformation of coordinates:

o0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k0=m

q
; 2ez¼ ðc=mÞ; a0 ¼ ðk1=mÞ; ew1 ¼ ðw=mÞ;ffiffiffiffiffi

ef
p
¼ 1=m ð3Þ

where e is a small positive parameter. Eq. (1) can be rewritten as

€X ðtÞþ2ez _X ðtÞþo2
0Xþa0X3

þew1DaXðtÞ ¼
ffiffiffiffiffi
ef

p
xðtÞ ð4Þ

The solution can be assumed of the following form of the
generalized harmonic function [33]:

XðtÞ ¼ AðtÞcos YðtÞ

_X ðtÞ ¼�AðtÞvðA,YÞsin YðtÞ ð5Þ

where

YðtÞ ¼FðtÞþGðtÞ

nðA,YÞ ¼
dF
dt
¼ ½ðo2

0þ3a0A2=4Þð1þZcos 2YÞ�1=2

Z¼ a0A2=ð4o2
0þ3a0A2

Þr1=3 ð6Þ

cosY(t) and sinY(t) are the so-called generalized harmonic
functions, nðA,YÞ is instantaneous frequency of the oscillator
and can be expanded into Fourier series, i.e.,

nðA,YÞ ¼
X1

n ¼ 0
b2nðAÞcos 2nY ð7Þ

where

b2nðAÞ ¼
1

2p

Z 2p

0
nðA,YÞcos 2 nYdY ð8Þ

Averaging nðA,YÞ with respect to Y from 0 to 2p yeilds to the
averaged frequency o(A) as follows:

oðAÞ ¼ b0ðAÞ ¼ ðo2
0þ3a0ðA

2=4ÞÞ1=2
ð1�ðZ2=16ÞÞ ð9Þ

Y(t) in Eq. (6) can be approximated as

YðtÞ �oðAÞtþGðtÞ ð10Þ

As shown in Refs. [18,32], the term associated with fractional
derivative contributes both to stiffness and damping. Based on the
generalized harmonic function technique, such term can be
replaced by the following forces containing a quasi-linear elastic
force and a quasi-linear damping force:

ew1DaXðtÞ ¼ eCðAÞ _X ðtÞþeKðAÞXðtÞ ð11Þ

where

CðAÞ ¼�
w1

pAoðAÞ

Z 2p

0
Da
ðAcos YÞsin YdY

¼ w1oa�2ðAÞ b0þ
b2

2

� �
sin

ap
2

� �

KðAÞ ¼
w1

pA

Z 2p

0
Da
ðAcos YÞcos YdY

¼ w1oa�1ðAÞ b0�
b2

2

� �
cos

ap
2

� �
ð12Þ

in which

b0 ¼oðAÞ ¼ ðo2
0þ3a0ðA

2=4ÞÞ1=2
ð1�ðZ2=16ÞÞ

b2 ¼ ðo2
0þ3a0ðA

2=4ÞÞ1=2
ððZ=2þ3ÞðZ3=64ÞÞ

ð13Þ

Note that the detailed procedure of derivation is presented in
Appendix.

The equivalent nonlinear stochastic system associated with
system (4) is given by

€X ðtÞþe½2zþCðAÞ� _X ðtÞþ½ðeKðAÞþo2
0ÞXðtÞþa0X3

ðtÞ� ¼
ffiffiffiffiffi
ef

p
xðtÞ ð14Þ

Fig. 1. The Duffing oscillator with hardening stiffness and fractional derivative

under random excitation.
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