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This paper investigates the boundary layer flow of power-law fluid over a permeable stretching surface.
The use of Lie group analysis reveals all possible similarity transformations of the problem. The
application of infinitesimal generator on the generalized surface stretching conditions leads to two
possible surface conditions which leads to the possibility of two types of stretching velocities namely;
the power-law and exponential stretching. The power-law stretching has already been discussed in the
literature, however exponential stretching is investigated here for the first time. Interestingly, an exact
analytical solution of the non-linear similarity equation for exponential stretching is developed for
shear thinning fluid with power-law index n=1/2. This solution is further extended to a larger class of
shear thinning fluids (n ~ 1/2) using perturbation method. In addition, the numerical solution for shear
thinning fluid is also presented. The two solutions match excellently for shear thinning fluids.
Analytical solution for shear thickening fluid is not tractable and the numerical solution is presented

for completeness.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The study of flow field due to stretching surface has found
many applications in different fields of engineering and industry.
The stretching of the plate is known to have a definite impact on
the quality of the finished product. A number of real processes are
thus undertaken using different stretching velocities such as
linear, power-law and exponential. Specifically, such flows are
generated in extrusion of polymers, fibers spinning, hot rolling,
manufacturing of plastic and rubber sheet, continuous casting and
glass blowing. For example, when a sheet of polymer is extruded
continuously from a die, a boundary layer develops that grows
along the sheet in the direction of its motion. A great deal of
research in fluid mechanics is rightfully produced to model these
problems and to provide analytical and numerical results for
better understanding of the fluid behavior and adequate explana-
tion of the experiments.

The history of stretching flows goes back to the celebrated
papers by Sakiadis [1,2] who initiated the study of boundary layer
behavior for the sheet moving with a constant velocity in a
viscous fluid. The analytical solution for steady stretching of the
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surface was given by Crane [3]. Fox et al. [4] considered the effects
of suction and injection on flow due to continuous moving
surface. However, these studies were undertaken for linear
stretching velocities. Gupta and Gupta [5] identified that stretch-
ing of the sheet may not necessarily be linear in real situations.
The power-law stretching velocity was thus undertaken by Banks
[6] and Ali [7]. Later on, exponential stretching for the viscous
fluid was considered by Magyari and Keller [8] while Elbashbeshy
[9] added the effects of wall suction in [8]. The underlying fluid in
the preceding discussion was invariably viscous.

Many fluids such as blood, dyes, yoghurt, ketchup, shampoo,
paint, mud, clay coatings, polymer melts, certain oils and greases
etc. exhibit complex relations between stress and strain. Such
fluids do not obey the Newton’s law of viscosity and are usually
called as non-Newtonian fluids. The flows of such fluids occur in a
wide range of practical problems having vital importance in
polymer depolarization, bubble columns, fermentation, compo-
site processing, boiling, plastic foam processing, bubble absorp-
tion and many others. Many authors have investigated the
phenomenon of stretching sheets in a viscoelastic fluid, we refer
to [10,11] as well.

Although a second grade fluid model may predict the normal
stress effects, it is not capable of describing shear thinning and
shear thickening phenomena which are best described by power-
law fluid. Pakdemirli [12,13] obtained similarity transformations
and solutions of non-Newtonian power-law fluid for various
geometries. Hassanien [14] and Zheng et al. [15] presented the
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numerical solution for continuously moving surface in a power-
law fluid. Andersson and Kumaran [16] extended the work of
Crane [3] to shear thinning and thickening fluid considering n ~ 1
and obtained the analytical solution for the case of linear
stretching using perturbation method.

The exponential stretching of the sheets has significant impor-
tance in industry and engineering. It is well known that topolo-
gical chaos depends upon the periodic motion of obstacles in a
two-dimensional flow to form non-trivial braids. This motion is
responsible for exponential stretching of material lines causing
efficient mixing. Friedlander and Vishik [17] showed the exis-
tence of exponential stretching (the positivity of the Lyapunov
exponent), as a necessary condition, for smooth flow in “fast”
dynamo problem.

Motivated by these considerations, we present analytical and
numerical solutions for exponentially stretching surface in a
power-law fluid. There are a number of reasons that make this
work significant. (a) To realize the importance of Lie group
analysis [18-25] in working out all possible similarities for
arbitrary stretching velocity in a power-law fluid. This leads us
to discover the similarity transformations for power-law stretch-
ing and exponential stretching. The power-law stretching for
power-law fluid has already been available in the literature while
the exponential stretching is worked out for the first time; (b)
having found the similarity transformations, the governing equa-
tions are transformed to self similar ordinary differential equa-
tion. The exact analytical solution (which is very rare) is now
obtained for exponentially stretching of the surface for shear
thinning fluid (power-law index n=1/2); (c) this solution is
further extended to cover a larger class of shear thinning fluids
i.e., n~ 1/2, using perturbation method; (d) numerical solutions
for shear thinning and thickening fluids are presented to establish
the accuracy of the analytical solution. Analytical solution for
shear thickening is not tractable and numerical solution is
presented for the completeness.

2. Formulation of the problem

Let us consider a two dimensional laminar flow of a steady
incompressible non-Newtonian power-law fluid over a permeable
surface. The origin of the stationary Cartesian coordinate system
is located at the leading edge of the surface undergoing a
generalized stretching with the velocity u,(X). The x-axis is along
the surface and y-axis is taken normal to the surface. The suction
or injection velocity through the surface is denoted by v, (X).
Using Boussinesq approximations the appropriate governing
equations of continuity and momentum for power-law fluid are
ol ov
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where @i and ¥ are the components of velocity in X and y
directions, p is the fluid density and t is the stress tensor.
Following the Ostwald-de-Waele model equation with para-
meters defined by Bird et al. [26], the shear stress component of
the stress tensor for power-law fluid can be written as
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where K is the consistency coefficient and n is the power-law
index. In the above constitutive equation n=1 corresponds to

Newtonian fluid, whereas n<1 and n>1 correspond to shear
thinning and shear thickening fluids, respectively.

Substituting the value of stress, the governing momentum Eq.
(2) becomes
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The boundary conditions of the problem are given by
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where Uy and V, are the reference velocities and L is the
characteristic length.

Introducing the following non-dimensional parameters (see
[27]):
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Egs. (1), (3) and (4) take the following form:
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3. Symmetries of the problem

Using Lie group method [16-18] in Eqgs. (6) and (7), the
infinitesimal generator can be written as
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We require that the Eqgs. (6) and (7) remain invariant under the

infinitesimal Lie point transformations given by
X* =x+&&(xy.uv)+0(E?),
y* :y+8£2(xvyvuvv)+o(82)v
u* =u+ep,(x%y,u,v)+0(E),
V¥ = U480, (X,Y,1,0)+0(e). 9)

Employing a lengthy but straightforward algebra, the form of
the infinitesimals is found to be
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Eq. (10) reveals that there are three finite-parameters a, b and
c and one infinite Lie group transformations (y(x)) for this
problem. The parameter ‘a’ corresponds to the translation in the
variable x whereas the parameter ‘b’ corresponds to the scaling in
the variables x, y and v and the parameter ‘c’ corresponds to the
scaling in the variables y, u and v. We will discuss only those
symmetries which leave the boundary conditions invariant. For
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