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a b s t r a c t

In this paper, the primary resonance of Duffing oscillator with two kinds of fractional-order derivatives

is investigated analytically. Based on the averaging method, the approximately analytical solution and

the amplitude–frequency equation are obtained. The effects of the two kinds of fractional-order

derivatives on the system dynamics are analyzed, and it is found that these two kinds of fractional-

order derivatives could affect not only the linear viscous damping, but also the linear stiffness, which

could be characterized by the equivalent damping coefficient and the equivalent stiffness coefficient.

The different effects are analyzed based on these two deduced equivalent parameters, when the two

fractional orders are limited in the typical intervals, i.e. p1A[0 1] and p2A[1 2]. Moreover, the

comparisons of the amplitude–frequency curves obtained by the approximately analytical solution

and the numerical integration are fulfilled, and the results certify the correctness and satisfactory

precision of the approximately analytical solution. Especially, the effects of the parameters in the

second kind of fractional-order derivative are studied when the coefficient of the first kind of fractional-

order derivative is zero or not. At last, two special cases for the coefficient of the second kind of

fractional-order derivative are analyzed, which could make engineers obtain satisfactory vibration

control performance and keep the frequency characteristic almost unchanged. These results are very

useful in vibration control engineering.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional-order derivative and integral is a natural general-
ization of traditional integer-order counterpart, which was firstly
presented in the late 1700s. Since then, a lot of investigations,
both on general theory and engineering application of fractional-
order derivative, has been carried out by many authors in
different fields [1–34]. In the theoretical aspect, the results were
focused on the definitions, properties, and efficient computation
methods of the fractional-order derivative and integral. In the
engineering application, two aspects were important and may be
the most interesting subjects, i.e. the description of the memory
and hereditary properties in various materials and processes, and
the artificial introduction of the fractional-order feedback into the
control engineering. In the engineering fields with fractional-
order derivatives, the effects of the parameters in the fractional-
order derivative on dynamical system were interesting and
meaningful, and many issued works had been fulfilled on this
subject.

Works on system dynamics with fractional-order derivatives
may be divided into several groups, such as qualitative analysis,
numerical computation, and analytical research on the approx-
imate solution, etc. The qualitative analysis is primarily focused
on the number and stability of equilibrium points and periodic
solutions in the systems. For example, Machado and Galhano [10]
analyzed statistical dynamics of a large number of micromecha-
nical masses with backlash and impact, and found the coexistence
of both integer and fractional properties in the global dynamics. Li
et al. [11] studied the stable parameters range of the simplified
Mathieu-type equation with fractional-order derivative, which
originated from a simple supported viscoelastic column subjected
to periodic axial force. By using the idea of stability switch, Wang
and Hu [12] found that the fractional-order derivative in linear
single degree-of-freedom (SDOF) dynamical system always acted
as a damping force, and the unique equilibrium point would be
asymptotically stable. Wang and Du [13] proved that the solution
of a linear SDOF fractional-order oscillator without external
excitation consisted of two parts, where the first one was similar
to the case without fractional-order derivative, and the second
one was a definite integral. Through the theorems on the stability
of incommensurate fractional order systems, Tavazoei et al. [14]
determined the parameters range where a van der Pol oscillator
with a specific fractional order could perform as an undamped
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oscillator. Pinto and Machado [15,16] studied a van der Pol oscil-
lator with complex-order and found multiple limit cycles coexisting
in the system, and they analyzed the amplitudes and frequencies of
the periodic solutions with and without external force.

Due to the complexity of fractional-order derivatives, numer-
ical computation on the complicated non-linear dynamics phe-
nomena such as bifurcation, chaos and synchronization was
another important group in the dynamical system with frac-
tional-order derivatives. Deng [18] designed a revised numerical
scheme combining with the predictor-corrector approach, and
presented the numerical error limit associated with the corre-
sponding stability condition. Atanackovic and Stankovic [19]
proposed a modified numerical procedure to solve fractional-
order differential equations, and the test results on several
examples verified the efficiency of the method. Cao et al. [20]
simulated the fractional-order Duffing equation and investigated
the effects of the fractional-order parameters on system dynamics
using phase curves, bifurcation diagram and Poincaré map.
Palfalvi [21] presented an improved Adomian decomposition
method to solve fractional-order differential equation with sine
excitation. Sheu et al. [22] solved the fractional-order damped
Duffing equations by transforming them into a set of fractional-
order integral equations. Wu et al. [23], Chen and Chen [24], and
Lu [25] studied the synchronization phenomena in different
fractional-order non-linear systems.

Analytical research was also important in fractional-order
dynamical system because it could present the direct relations
between different kinds of solutions with the system parameters.
Qi and Xu [26] analyzed the unsteady flow of viscoelastic fluid
with the fractional-order derivative Maxwell model. Wahi and
Chatterjee [27] studied an oscillator with special fractional-order
derivative (p¼0.5) and time-delay by averaging method. Chen
and Zhu [28,29], Padovan and Sawicki [30], Borowiec et al. [31],
and Huang and Jin [32] also investigated different fractional-order
systems and presented important results by analytical research.
However, these analytical researches were only focused on some
special fractional orders, or the fractional-order derivative was
simply considered as a special damping force, which may be
insufficient in some cases. By the averaging method, Shen et al.
studied a linear oscillator [33] and a Duffing oscillator [34] with
fractional-order derivative where the fractional order was
between 0 and 1, and established the equivalent damping
coefficient and the equivalent stiffness coefficient to characterize
the effects of the fractional-order derivative on system dynamics.

In this paper, we intend to study the Duffing oscillator with
two kinds of fractional-order derivatives, where the fractional-
order derivatives are classified based on their range and could
cover all the cases. This paper is organized as follow. In Section 2
the primary resonance of the Duffing oscillator with two kinds of
fractional-order derivatives is investigated, where two important
formulae are presented and the approximately analytical solution
is obtained. Additionally, the effects of the parameters in the two
fractional-order derivatives on the system damping and stiffness
are formulated as the equivalent damping coefficient and the
equivalent stiffness coefficient, which is remarkably different
from the results in most other existed works. Section 3 presents
the steady-state solution, the amplitude–frequency equation, and
the stability condition of the steady-state solution. At last, the
comparison of the approximately analytical solution with the
numerical one is fulfilled in Section 4, and the effects of the
parameters in the second kind of fractional-order derivative on
the amplitude–frequency equation are also given in this section.
Moreover, two special cases, i.e. two appropriate selection meth-
ods for the fractional-order coefficient in the second kind of
fractional-order derivative are presented, which may be very
useful in vibration control engineering.

2. Approximately analytical solution of Duffing oscillator with
two kinds of fractional-order derivatives

The considered SDOF Duffing oscillator with two kinds of
fractional-order derivatives is shown as

m €xðtÞþkxðtÞþc _xðtÞþa1x3ðtÞþK1Dp1 ½xðtÞ�þK2Dp2 ½xðtÞ� ¼ F cosðotÞ,

ð1Þ

where m, k, c, a1, F, o are the system mass, linear stiffness
coefficient, linear viscous damping coefficient, non-linear stiffness
coefficient, excitation amplitude and excitation frequency respec-
tively. In Eq. (1), K1Dp1 ½xðtÞ� is the first kind of fractional-order
derivative x(t) to t with the fractional coefficient K1 (K140) and
the fractional order p1, where 2(n�1)rp1r2n�1 and n is
natural number. K2Dp2 ½xðtÞ� is the second kind of fractional-order
derivative of x(t) to t with the fractional coefficient K2 (K240) and
the fractional order p2 (2n�1rp2r2n). These two kinds of
fractional-order derivatives could cover all the possibility of the
fractional orders, when the fractional orders are limited in
real number field. In the next discussion we could find the
difference of these two kinds of fractional-order derivatives is
remarkable.

There are several definitions for fractional-order derivative,
and they are equivalent under some conditions for a wide class of
functions. In Caputo’s sense, the definition of p order derivative of
x(t) to t is

Dp xðtÞ½ � ¼
1

Gðn�pÞ

Z t

0

xðnÞðuÞ

ðt�uÞp�nþ1
du, ð2Þ

where n�1opon, G(z) is Gamma function satisfying
G(zþ1)¼zG(z).

Using the following transformation of coordinates:

o0 ¼

ffiffiffiffiffi
k

m

r
, 2em¼ c

m
, ea¼ a1

m
, ek1 ¼

K1

m
, ek2 ¼

K2

m
, ef ¼ F

m
, ð3Þ

Eq. (1) becomes

€xðtÞþo2
0xðtÞþ2em _xðtÞþeax3ðtÞþek1Dp1 ½xðtÞ�þek2Dp2 ½xðtÞ�

¼ ef cosðotÞ, ð4Þ

where o0 is natural frequency. It should be pointed out that in
this transformation, e, m, a, k1, k2 and f are not dimensionless
quantity, and the transformation is only to satisfy the require-
ment for averaging method formally. The primary resonance
means the excitation frequency is close to the natural one, i.e.
oEo0. The approximate degree of these two frequencies could
be denoted by

o2 ¼o2
0þes, ð5Þ

where s is the detuning factor in averaging method [35–37].
Accordingly Eq. (4) could be re-written as

€xðtÞþo2xðtÞ ¼ e f cosðotÞþsxðtÞ�2m _xðtÞ
�
�ax3ðtÞ�k1Dp1 ½xðtÞ��k2Dp2 ½xðtÞ�

�
ð6Þ

Assuming Eq. (6) has the solution as

x¼ a cosj, ð7aÞ

and

_x ¼�ao sinj, ð7bÞ

where the amplitude a and the generalized phase j (j¼otþy)
are slow-varying functions of t. By differentiating Eq. (7a) to t, one
could obtain

_x ¼ _a cosj�aðoþ _yÞsinj ð8Þ
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