
Analytical evaluation of the elastic and plastic resistances of double
symmetric rectangular hollow sections under axial force and biaxial bending

A.M. Baptista n

Departamento de Estruturas, LNEC, Av. do Brasil 101, 1700-066 Lisboa Codex, Portugal

a r t i c l e i n f o

Article history:

Received 31 May 2011

Received in revised form

5 April 2012

Accepted 19 June 2012
Available online 29 June 2012

Keywords:

Steel structures

Rectangular hollow section

Biaxial bending

Deviated bending

Axial force

Elastic limit state

Plastic limit state

Interaction criteria

Neutral axis

a b s t r a c t

In the recent codes for the design of steel structures, the elastic–plastic methods of analysis are

recognised to provide an efficient estimation of the ultimate resistance of some of these structures.

These methods are usually based on some basic hypotheses, such as the creation of plastic hinges in the

most stressed cross-sections, for instance.

As the development of these plastic hinges depends on the interaction between the internal forces

and on the cross-section shape, specific equations are required for the analysis of different types of

cross-sections. However, most frequently, these equations are not available, or they are expressed by

means of simplified expressions; this is usually the case when biaxial bending is involved.

This paper presents new interaction criteria for the analysis of steel rectangular hollow sections

subjected to an axial force and biaxial bending moments, at the elastic or the plastic limit states (as long

as buckling phenomena are not involved). The plastic interaction criteria are presented, in a first step,

for some particular combinations of the internal forces, such as axial loading with bending about a main

axis, and biaxial bending without axial loading. Then, the global solution for the simultaneous

combination of an axial force and bending moments about both the main axes of inertia are described

in detail. All these plastic interaction criteria are compared with the corresponding plastic criteria

adopted in the Eurocode 3 (EC3). Some suggestions are presented in order to improve the results given

by these EC3 criteria.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of the behaviour and limit carrying capacity of a
cross-section under biaxial bending is usually a complex problem,
which has been studied by many researchers for a long time.
A large number of publications may be found, covering the study
of structural cross-sections made of different materials (such as
reinforced concrete sections [12,27], composite steel–concrete
sections [23,24], steel sections [29], or aluminium sections [11],
for instance). A review of different methods used for the evalua-
tion of the cross-sections plastic resistance may be found in [25];
most of them essentially consider only axial stresses for the
determination of the plastic section capacity. Shear stresses from
uniform torsion, warping torsion and from shear forces are either
disregarded or considered only approximately in some of those
approaches [25].

In the case of steel sections, a considerable amount of research
has been done concerning the study of different types of cross-
sections, such as H and I shapes [18], solid and hollow rectangular

sections [16,29], or angle sections [31,32]. Some extensive
reviews of these research works may be found in several pub-
lications, such as [13] or [18] for instance.

The elastic–plastic methods are currently adopted in modern
standard codes of design to estimate the ultimate resistance of
some steel structures, since they allow the beneficial effects of
yielding in the redistribution of stresses to be taken into account.
The analysis of the limit carrying capacity of a cross-section under
biaxial bending is more simple than the analysis of its behaviour
along the elastic–plastic range [7], and hence the earliest papers
were restricted to that problem [33].

The research works carried out with this purpose have been
based on analytical studies [14,17], experimental investigations
[11,26,30], and numerical models [10,19,20]. A large number of
these studies took into account other aspects than the elastic or
plastic carrying capacity of the cross-sections, such as the possible
occurrence of local or overall buckling phenomena of the struc-
tural elements in biaxial bending [26,31,32].

Although the results of some numerical models evidence a
very good agreement with test results, their practical use for
design purposes is limited, since most of them are currently not
available and the labour required for the numerical calculation is
quite extensive [20]. Therefore, their applications usually remain
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within the limits of research studies, and the designers often rely
on simple interaction equations, between the cross-section inter-
nal forces, which may be found in bridge and building specifica-
tions such as [1–5,15], for instance.

The interaction criteria between the cross-section internal forces
at its plastic limit state depend on the cross-section shape. Conse-
quently, specific analytical expressions are required for each type of
cross-sections. However, these analytical expressions are not cur-
rently available for some cross-section shapes, or they are defined
by means of simplified equations, which do not take into account all
the possible scenarios of loading, depending on the combinations of
internal forces and relevant geometrical parameters.

On the other hand, the existing accurate methods are fre-
quently complex, and difficult to apply in practice. This is often
the case when biaxial bending of a cross-section is involved.

The design interaction formulae used to check the safety of
members and cross-sections subjected to biaxial bending and
axial force are usually the result of previous research studies,
which are in the origin of those formulae or were dedicated to
their discussion and validation. One of these interaction criteria,
indicated in Eq. (1), was proposed by Bresler [12] and it has been
adopted as the basis of the most common design criteria stated in
the structural codes, for the verification of different types of cross-
sections (solid and hollow rectangular sections, or H and I-shapes
for instance) made of different materials, such as steel, alumi-
nium, reinforced concrete, composite concrete and steel, etc:

Mn,y

Mo,y

� �a1

þ
Mn,z

Mo,z

� �a2

¼ 1:0 ð1Þ

where Mn,y and Mn,z are the bending moment components, about
the cross-section main axes of inertia, associated to an axial load
N, and Mo,y and Mo,z represent the cross-section resistance
capacities in simple bending under the axial load N, when Mn,z¼0
or Mn,y¼0 respectively. Many solutions have been suggested for
the evaluation of the a1 and a2 coefficients or for alterations to
Eq. (1) [23], in order to adjust it to the ultimate resistance
capacity of different cross-section shapes and materials [15].

Rubin [28] has proposed new interaction criteria between the
bending moment, the shear force and the axial force for simple
symmetrical box and I-sections, when bent about their strong
axis, and for double-symmetric I-sections bent about their weak
axis. These equations are in the basis of the specifications from
the Eurocode 3 [2,3] and from the German Steel Code DIN 18800
[4,5], for specific section types such as I-sections, circular tubes,
rectangular hollow sections and solid rectangles and plates [25].

Yet, even if these equations give a good estimation of the
cross-section resistance for a large number of practical situations,
some research works have pointed out its limitations and have
presented alternative solutions, namely under the form of design
tables [17].

This work presents new interaction criteria for the analysis of
rectangular hollow sections subjected to a combination of an axial
force and biaxial bending moments, at the elastic or plastic limit
states (as long as buckling phenomena are not involved). They
have been obtained by means of an exact integration (within the
frame of the hypotheses adopted in this study) of the cross-
section axial stress field and they are valid for any current cross-
section proportions (as long as buckling phenomena are not
involved) and any position of the cross-section neutral axis. Shear
stresses, due to bending or torsion for instance, are supposed to
be very small and they are not taken into account.

Written in a non-dimensional form, these criteria are inde-
pendent from the cross-section dimensions and steel strength,
and from the Unit System used in the analysis [6].

The main advantages of these interaction criteria lie on their
accuracy and on the direct relationship established between the
cross-section internal forces, the cross-section geometric para-
meters and the position of the cross-section neutral axis. These
advantages will be put in evidence by means of some application
examples.

2. Basic principles of the analytical criteria

2.1. Assumptions

Fig. 1 presents two different configurations of a rectangular
hollow cross-section under biaxial bending.

The v-axis is assumed to be the bending axis. Its direction is
defined by the cross-section linear segment where the stresses
due to biaxial bending, without axial loading, are equal to zero.

The cross-section b dimension is chosen parallel to the y-axis
and the h dimension is parallel to the z-axis (Fig. 1). The values of
My and Mz are supposed to be always positive; therefore, the
inclination angle a of the bending axis v regarding the y-axis is
within the limits 0raop/2.

In the case of uniaxial bending about a main axis, we have
Mw¼0, Mz¼0, My¼Mv and a¼0. If the bending axis is the strong
axis, brh; if the bending axis is the weak axis, hrb (Fig. 1).
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Fig. 1. Symbols and reference axes.
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