Accepted Manuscript

Transition Metal Adatoms on Graphene: A Systematic Density Functional Study

Montserrat Manadé, Francesc Viñes, Francesc Illas

PII: S0008-6223(15)30189-5

DOI: 10.1016/j.carbon.2015.08.072

Reference: CARBON 10237

To appear in: Carbon

Received Date: 18 June 2015 Revised Date: 30 July 2015

Accepted Date: 21 August 2015

Please cite this article as: M. Manadé, F. Viñes, F. Illas, Transition Metal Adatoms on Graphene: A Systematic Density Functional Study, *Carbon* (2015), doi: 10.1016/j.carbon.2015.08.072.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

Transition Metal Adatoms on Graphene:

A Systematic Density Functional Study

Montserrat Manadé, Francesc Viñes,* and Francesc Illas

Departament de Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1,08028 Barcelona, Spain.

Abstract

Transition Metal (TM) atom adsorption on graphene results in a tuning of their electronic, magnetic, storage, sensing, and catalytic properties. Herein we provide a thorough density functional theory study, including dispersion, of the structural, energetic, diffusivity, magnetic, and doping properties for all 3d, 4d, and 5d TM adatoms adsorbed on graphene. TMs prefer to sit on hollow sites when chemisorbed, but on bridge or top sites when physisorbed; which is the case of atoms with d^5 and d^{10} configurations. Diffusion energy barriers follow the adsorption energy trends. Dispersive forces simply increase the adsorption strength by ~0.35 eV. Adatom height seems to be governed by the bond strength. All TMs are found to n-dope graphene, except Au, which p-dopes. The electron transfer decays along the d series due to the electronegativity increase. Early TMs infer noticeable magnetism to graphene, yet for elements with more than five electrons in the d shell the local magnetic moments abruptly decay to low or zero values. Experimental observations on adatom position, height, temperature clustering and Ostwald ripening, p- or n-doping, or the electronic configuration can be rationalized by present calculations, which deliver a solid theoretical ground from which experimental features can be interpreted and discussed.

*Corresponding Author: Tel: +34 93 403 37 07, e-mail: francesc.vines@ub.edu

Download English Version:

https://daneshyari.com/en/article/7851285

Download Persian Version:

https://daneshyari.com/article/7851285

<u>Daneshyari.com</u>