Contents lists available at SciVerse ScienceDirect



International Journal of Non-Linear Mechanics



journal homepage: www.elsevier.com/locate/nlm

## Non-linear analysis of functionally graded fiber reinforced composite laminated plates, Part II: Numerical results

### Hui-Shen Shen<sup>a,b,\*</sup>, Chen-Li Zhang<sup>a</sup>

<sup>a</sup> School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
<sup>b</sup> State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China

#### ARTICLE INFO

Article history: Received 25 April 2011 Received in revised form 29 November 2011 Accepted 7 March 2012 Available online 21 March 2012

Keywords: Functionally graded laminates Hygrothermal effect Temperature-dependent properties Elastic foundation

#### ABSTRACT

In this Part, the extensive parametric studies performed are reported and numerical results are presented for the non-linear vibration, non-linear bending and compressive postbuckling of uniformly distributed and functionally graded fiber reinforced unsymmetric cross-ply and/or antisymmetric angle-ply laminated plates resting on Pasternak elastic foundations under different hygrothermal environmental conditions. The numerical results show that the functionally graded fiber reinforcement has a significant effect on the postbuckling response and load-bending moment curves of plate bending, whereas this effect is less pronounced on the load-deflection curves of plate bending and the linear and non-linear frequencies of the same plate.

© 2012 Elsevier Ltd. All rights reserved.

#### 1. Introduction

The solution methodology is described with sufficient detail in Part I. Results are presented herein for non-linear free vibration, non-linear bending and postbuckling of  $(0/90)_{\rm S}$  symmetric crossply,  $(0/90)_{2T}$  unsymmetric cross-ply and  $(45/-45)_{2T}$  antisymmetric angle-ply laminated plates resting on an elastic foundation in hygrothermal environments. The plate geometric parameters *a*/ b=1, b/h=10, the thickness of each ply is identical and the total thickness of the plate h=5 mm. Four types of functionally graded fiber reinforced composite (FG-FRC) laminated plates are configurated. For Type V, the fiber volume fractions are assumed to have graded distribution [0.75/0.65/0.55/0.45] for four plies, referred to as FG-V. For Type  $\Lambda$ , the distribution of fiber reinforcements is inversed, i.e. [0.45/0.55/0.65/0.75], referred to as FG-A. For Type X<sub>1</sub>, a mid-plane symmetric graded distribution of fiber reinforcements is achieved, i.e. [0.75/0.45/0.45/0.75], and for type  $X_2$  the fiber volume fractions are assumed to have [0.45/0.75/0.75/0.45], referred to as FG-X<sub>1</sub> and FG-X<sub>2</sub>, respectively. A uniformly distributed fiber reinforced composite (UD-FRC) laminated plate with the same thickness is also considered as a comparator for which the fiber volume fraction of each ply is identical and  $V_f = 0.6$ . In such a way, the two cases of UD- and FG-FRC laminated plates will have the same value of total fraction of fiber.

E-mail address: hsshen@mail.sjtu.edu.cn (H.-S. Shen).

For all cases discussed below, graphite/epoxy composites are selected. Unlike in [1–4], the material properties of fibers are assumed to be anisotropic and are taken to be [5]  $E_{11}^f = 233.05 \text{ GPa}$ ,  $E_{22}^f = 23.1 \text{ GPa}$ ,  $G_{12}^f = 8.96 \text{ GPa}$ ,  $v^f = 0.2$ ,  $\alpha_{11}^f = -0.54 \times 10^{-6}/^{\circ}\text{C}$ ,  $\alpha_{22}^f = 10.08 \times 10^{-6}/^{\circ}\text{C}$ ,  $\rho^f = 1750 \text{ kg/m}^3$ . The material properties of matrix are assumed to be  $c_{fm}=0$ ,  $v^m=0.34$ ,  $\alpha^m=45.0 \times 10^{-6}/^{\circ}\text{C}$ ,  $\rho^m=1200 \text{ kg/m}^3$ ,  $\beta^m=2.68 \times 10^{-3}/\text{wt}$  percent H<sub>2</sub>O, and  $E^m=(3.51-0.003T-0.142C)$  GPa, in which  $T=T_0+\Delta T$  and  $T_0=25 \text{ C}$  (room temperature), and  $C=C_0+\Delta C$  and  $C_0=0$  wt percent H<sub>2</sub>O.

Two foundation models are considered. The stiffnesses are  $(k_1, k_2)$ =(100, 10) for the Pasternak elastic foundation,  $(k_1, k_2)$ =(100, 0) for the Winkler elastic foundation and  $(k_1, k_2)$ =(0, 0) for the plate without any elastic foundation. The in-plane boundary condition is assumed to be immovable (case 2) except for the Table 7 in Section 2 and Fig. 7 in Section 3, whereas in Section 4 the in-plane boundary condition is assumed to be movable (case 1).

#### 2. Non-linear vibration of FG-FRC laminated plates

Before generating extensive results, a few check cases are considered in order to test the derived solutions.

As first example, the first four dimensionless natural frequencies of a  $(0/90)_{\rm S}$  symmetric cross-ply laminated plate at C=0.1%and T=325 K are calculated and compared in Table 1 with Ritz method results of Whitney and Ashton [6], finite element method (FEM) results of Ram and Sinha [7] and Parhi et al. [8], and perturbation solutions of Huang et al. [4]. The geometric parameters and material properties adopted are: a/b=1, b/h=100,

<sup>\*</sup> Corresponding author at: School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China.

<sup>0020-7462/</sup>\$ - see front matter © 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ijnonlinmec.2012.03.003

*E*<sub>11</sub>=130 GPa, *E*<sub>22</sub>=9.5 GPa, *G*<sub>12</sub>=*G*<sub>13</sub>=6.0 GPa, *G*<sub>23</sub>=0.5*G*<sub>12</sub>, *v*<sub>12</sub>= 0.3,  $\alpha_{11}$ =-0.3 × 10<sup>-6</sup>/K,  $\alpha_{22}$ =28.1 × 10<sup>-6</sup>/K. The dimensionless frequencies are defined by  $\overline{\omega} = \Omega(a^2/h)\sqrt{\rho/E_{22}}$ .

As a second example, the first four dimensionless natural frequencies for a (0/0/0/90/0) unsymmetric cross-ply laminated square plate with each ply having different thickness and material properties are calculated and compared in Table 2 with FEM results of Kulkarni and Kapuria [9] based on a higher order shear deformation plate theory (HSDPT). The thicknesses of each ply are [0.1h/0.25h/0.15h/0.2h/0.3h] and the material properties are  $E_{11}=E_{22}=6.9$  GPa,  $G_{12}=G_{13}=G_{23}=1.38$  GPa, for the first ply;  $E_{11}=224.25$  GPa,  $E_{22}=6.9$  GPa,  $G_{12}=G_{13}=56.58$  GPa,  $G_{23}=1.38$  GPa for the second ply; and  $E_{11}=172.5$  GPa,  $E_{22}=6.9$  GPa,  $G_{12}=G_{13}=3.45$  GPa,  $G_{23}=1.38$  GPa for the other three plies; and for all these plies  $v_{12}=0.25$ ,  $\rho=1578$  kg/m<sup>3</sup>.

#### Table 1

Comparisons of natural frequency parameters  $\overline{\omega} = \Omega_L (a^2/h) \sqrt{\rho/E_{22}}$  for  $(0/90)_S$  laminated square thin plates in hygrothermal environments.

| Source                 | $\overline{\omega}_{11}$ | $\overline{\omega}_{12}$ | $\overline{\omega}_{21}$ | $\overline{\omega}_{22}$ |
|------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| C=0.1%                 |                          |                          |                          |                          |
| Whitney and Ashton [6] | 9.411                    | 19.911                   | 39.528                   | 45.815                   |
| Ram and Sinha [7]      | 9.429                    | 20.679                   | 40.068                   | 46.752                   |
| Parhi et al. [8]       | 9.393                    | 19.887                   | 39.345                   | -                        |
| Huang et al. [4]       | 9.389                    | 19.866                   | 39.265                   | 45.518                   |
| Present                | 9.389                    | 19.866                   | 39.265                   | 45.520                   |
| T=325 K                |                          |                          |                          |                          |
| Whitney and Ashton [6] | 8.068                    | 18.378                   | 38.778                   | 44.778                   |
| Ram and Sinha [7]      | 8.088                    | 19.196                   | 39.324                   | 45.431                   |
| Parhi et al. [8]       | 8.046                    | 18.350                   | 38.590                   | -                        |
| Huang et al. [4]       | 8.043                    | 18.140                   | 38.364                   | 44.686                   |
| Present                | 8.042                    | 18.329                   | 38.511                   | 44.476                   |
|                        |                          |                          |                          |                          |

#### Table 2

Comparisons of natural frequency parameters  $\overline{\omega} = \Omega_L(a^2/h)\sqrt{\rho/E_{22}}$  for a (0/0//90/0) laminated square plate with each ply having different thickness and material properties.

| b/h | Source                   | $\overline{\omega}_1$ | $\overline{\omega}_2$ | $\overline{\omega}_3$ | $\overline{\omega}_4$ |
|-----|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 5   | Kulkarni and Kapuria [9] | 12.5024               | 17.0884               | 23.1636               | 32.4004               |
|     | Present                  | 12.5336               | 17.1726               | 23.2941               | 32.5331               |
| 10  | Kulkarni and Kapuria [9] | 14.7135               | 21.9033               | 32.1707               | 44.4610               |
|     | Present                  | 14.7391               | 21.9950               | 32.3403               | 44.6096               |
| 20  | Kulkarni and Kapuria [9] | 15.5240               | 24.1336               | 37.4023               | 50.7163               |
|     | Present                  | 15.5435               | 24.2037               | 37.5012               | 50.8190               |

In addition, the non-linear to linear frequency ratios  $\omega_{NL}/\omega_L$  for cross-ply laminated plates are calculated and compared in Table 3 with the direct integration method results of Singh et al. [10], and the homotopy analysis method results of Pirbodaghi et al. [11]. The geometric parameters and material properties adopted are: b=0.254 m,  $E_{11}=206.84$  GPa,  $E_{22}=5.171$  GPa,  $G_{12}=G_{13}=G_{23}=2.855$  GPa,  $v_{12}=0.254$ ,  $\rho=2564.8$  kg/m<sup>3</sup>.

These three comparisons show that the results from the present method are in good agreement with the existing results, thus verifying the reliability and accuracy of the present method. Note that in all these three examples the material properties are assumed to be independent of temperature.

Table 4 presents the first five dimensionless natural frequencies of  $(0/90)_{\rm S}$ ,  $(0/90)_{\rm 2T}$  and  $(45/-45)_{\rm 2T}$  laminated plates with different types of FG distribution of fiber reinforcements at  $\Delta T = \Delta C = 0$ . The results for the same plate with UD distribution of fiber reinforcements are also listed for direct comparison. The dimensionless natural frequency is defined by  $\tilde{\Omega} = \Omega(a^2/h)$  $\sqrt{\rho_0/E_0}$ , where  $\rho_0$  and  $E_0$  are the reference values of  $\rho^m$  and  $E^m$ at  $\Delta T = \Delta C = 0$ . It can be seen that the functionally graded distribution of FG-V and FG- $\Lambda$  has a very small effect on the natural frequencies of  $(0/90)_{\rm S}$  and  $(0/90)_{\rm 2T}$  plates. It is found that the  $(45/-45)_{\rm 2T}$  plate of FG-X<sub>1</sub> type, while the  $(0/90)_{\rm S}$  and  $(0/90)_{\rm 2T}$ plates of FG-X<sub>2</sub> type have a lower natural frequency than the same plate of UD type.

Tables 5 and 6 show, respectively, the effect of foundation stiffness along with the hygrothermal effect on the fundamental

#### Table 4

Comparisons of natural frequencies  $\tilde{\Omega} = \Omega(a^2/h)\sqrt{\rho_0/E_0}$  for hybrid laminated plates (a/b=1, b/h=10).

| Lay-up                 |                   | $	ilde{\Omega}_{11}$ | $	ilde{\Omega}_{12}$ | $	ilde{\Omega}_{21}$ | $	ilde{\Omega}_{22}$ | $	ilde{\Omega}_{13}$ |
|------------------------|-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| (0/90) <sub>s</sub>    | UD                | 13.639               | 25.299               | 31.929               | 38.659               | 43.102               |
|                        | FG-V              | 13.589               | 25.424               | 32.089               | 38.922               | 43.426               |
|                        | FG-Λ              | 13.589               | 25.424               | 32.089               | 38.922               | 43.426               |
|                        | FG-X <sub>1</sub> | 14.165               | 24.884               | 32.642               | 38.834               | 41.581               |
|                        | FG-X <sub>2</sub> | 13.301               | 26.521               | 32.273               | 39.916               | 46.438               |
| (0/90) <sub>2T</sub>   | UD                | 13.770               | 30.524               | 30.524               | 41.154               | 50.760               |
|                        | FG-V              | 13.728               | 30.213               | 30.929               | 41.273               | 50.502               |
|                        | FG-Λ              | 13.727               | 30.921               | 30.213               | 41.270               | 51.521               |
|                        | FG-X <sub>1</sub> | 13.776               | 30.096               | 30.096               | 40.530               | 49.691               |
|                        | FG-X <sub>2</sub> | 13.643               | 31.386               | 31.386               | 42.554               | 53.505               |
| (45/-45) <sub>2T</sub> | UD                | 16.806               | 31.717               | 31.717               | 45.810               | 49.465               |
|                        | FG-X <sub>1</sub> | 16.601               | 31.179               | 31.179               | 44.740               | 48.517               |
|                        | FG-X <sub>2</sub> | 16.954               | 32.804               | 32.804               | 48.273               | 51.876               |

#### Table 3

Comparison of non-linear to linear frequency ratios  $\omega_{NL}/\omega_L$  for cross-ply laminated plates (b=0.254 m).

| a/b         | b/h | Source                 | $\overline{W}_{ m max}/h$ |        |        |        |        |        |
|-------------|-----|------------------------|---------------------------|--------|--------|--------|--------|--------|
|             |     |                        | 0.25                      | 0.5    | 0.75   | 1.0    | 1.5    | 2.0    |
| (0/90/90/0) |     |                        |                           |        |        |        |        |        |
| 1.0         | 40  | Singh et al. [10]      | 1.0535                    | 1.2038 | 1.4172 | 1.6691 | 2.2355 | 2.8439 |
|             |     | Pirbodaghi et al. [11] | 1.0501                    | 1.1879 | 1.3874 | 1.6245 | 2.1659 | 2.7486 |
|             |     | Present                | 1.0503                    | 1.1885 | 1.3886 | 1.6279 | 2.1709 | 2.7569 |
| 2.0         | 20  | Singh et al. [10]      | 1.1327                    | 1.4674 | 1.8946 | 2.3652 | 3.3634 | 4.3949 |
|             |     | Pirbodaghi et al. [11] | 1.1276                    | 1.4434 | 1.8541 | 2.3092 | 3.2783 | 4.2811 |
|             |     | Present                | 1.1286                    | 1.4475 | 1.8612 | 2.3196 | 3.2949 | 4.3038 |
| (0/90/0/90) |     |                        |                           |        |        |        |        |        |
| 1.0         | 40  | Singh et al. [10]      | 1.0634                    | 1.2388 | 1.4832 | 1.7679 | 2.4000 | 3.0729 |
|             |     | Pirbodaghi et al. [11] | 1.0514                    | 1.1924 | 1.3961 | 1.6392 | 2.1899 | 2.7835 |
|             |     | Present                | 1.0590                    | 1.2189 | 1.4467 | 1.7155 | 2.3178 | 2.9618 |
| 2.0         | 20  | Singh et al. [10]      | 1.0653                    | 1.2454 | 1.4956 | 1.7863 | 2.4303 | 3.1148 |
|             |     | Pirbodaghi et al. [11] | 1.0625                    | 1.2112 | 1.4719 | 1.7608 | 2.3712 | 3.0031 |
|             |     | Present                | 1.0642                    | 1.2369 | 1.4807 | 1.7664 | 2.4021 | 3.0790 |

Download English Version:

# https://daneshyari.com/en/article/785129

Download Persian Version:

https://daneshyari.com/article/785129

Daneshyari.com