Accepted Manuscript

Ultrafast Sol-Gel Synthesis of Graphene Aerogel Materials

Matthew B. Lim, Matthew Hu, Sandeep Manandhar, Avery Sakshaug, Adam Strong, Dr. Leah Riley, Peter J. Pauzauskie

PII: S0008-6223(15)30155-X

DOI: 10.1016/j.carbon.2015.08.037

Reference: CARBON 10202

To appear in: Carbon

Received Date: 7 May 2015

Revised Date: 29 July 2015

Accepted Date: 13 August 2015

Please cite this article as: M.B. Lim, M. Hu, S. Manandhar, A. Sakshaug, A. Strong, L. Riley, P.J. Pauzauskie, Ultrafast Sol-Gel Synthesis of Graphene Aerogel Materials, *Carbon* (2015), doi: 10.1016/j.carbon.2015.08.037.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

CCEPTED MANUSCRIPT

DOI:

Article type: Research Paper

Ultrafast Sol-Gel Synthesis of Graphene Aerogel Materials

Authors: Matthew B. Lim, Matthew Hu, Sandeep Manandhar, Avery Sakshaug, Adam Strong, Leah Riley, Peter J. Pauzauskie*

Affiliations:

Matthew B. Lim, Matthew Hu, Sandeep Manandhar, Peter J. Pauzauskie Department of Materials Science and Engineering, University of Washington, 302 Roberts Hall, Box 352120, Seattle WA 98195-2120, USA

Avery Sakshaug, Adam Strong, Dr. Leah Riley EnerG2 Technologies Inc., 100 NE Northlake Way, Seattle WA 98105, USA

Sandeep Manandhar

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA

Peter J. Pauzauskie

Fundamental & Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA

Keywords: graphene, aerogel, acetonitrile, resorcinol-formaldehyde, supercapacitor

Abstract

Graphene aerogels derived from graphene-oxide (GO) starting materials recently have been shown to exhibit a combination of high electrical conductivity, chemical stability, and low cost that has enabled a range of electrochemical applications. Standard synthesis protocols for manufacturing graphene aerogels require the use of sol-gel chemical reactions that are maintained at high temperatures for long periods of time ranging from 12 hours to several days. Here we report an ultrafast, acid-catalyzed sol-gel formation process in acetonitrile in which wet GO-loaded gels are realized within 2 hours at temperatures below 45°C. Spectroscopic and electrochemical analysis following supercritical drying and pyrolysis confirms the reduction of the GO in the aerogels to sp^2 carbon crystallites with no residual carbon-nitrogen bonds from the acetonitrile or its derivatives. This rapid synthesis

* Corresponding author. Tel: 206-543-2303. E-mail: peterpz@uw.edu (Peter Pauzauskie)

Download English Version:

https://daneshyari.com/en/article/7851354

Download Persian Version:

https://daneshyari.com/article/7851354

<u>Daneshyari.com</u>