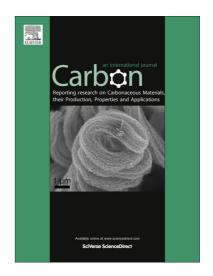
Accepted Manuscript

Graphene Wrapped Copper-Nickel Nanospheres on Highly Conductive Graphene Film for Use as Counter Electrodes of Dye-sensitized Solar Cells

Hui Bi, Houlei Cui, Tianquan Lin, Fuqiang Huang


PII: S0008-6223(15)00342-5

DOI: http://dx.doi.org/10.1016/j.carbon.2015.04.051

Reference: CARBON 9869

To appear in: Carbon

Received Date: 20 January 2015 Accepted Date: 20 April 2015

Please cite this article as: Bi, H., Cui, H., Lin, T., Huang, F., Graphene Wrapped Copper-Nickel Nanospheres on Highly Conductive Graphene Film for Use as Counter Electrodes of Dye-sensitized Solar Cells, *Carbon* (2015), doi: http://dx.doi.org/10.1016/j.carbon.2015.04.051

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Graphene Wrapped Copper-Nickel Nanospheres on Highly Conductive Graphene Film for Use as Counter Electrodes of Dye-sensitized Solar Cells

Hui Bi ^a, Houlei Cui ^a, Tianquan Lin ^a, Fuqiang Huang ^{a,b*}

^aCAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China.

^bBeijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China.

Abstract

A novel architecture of graphene wrapped copper-nickel (Cu-Ni) nanospheres (NSs)/graphene film was proposed to be TCO- and Pt-free counter electrode (CE) with high electrocatalytic activity for dye-sensitized solar cells (DSSCs). The novel architecture CE is composed of highly conductive graphene film, Cu-Ni alloy NSs and the wrapping graphene on the surface of alloy NSs. The graphene film as an electrically conductive layer was synthesized by chemical vapor deposition (CVD) on the insulating SiO₂ substrate, and graphene wrapped Cu-Ni alloy catalyst NSs on the graphene film were *in-situ* formed by the reduction of Cu-Ni acetate and graphene growth using CVD. The graphene wrapped Cu-Ni NSs/graphene film CE shows much superior electrocatalytic activity, compared with graphene film, and the power conversion efficiency of 5.46% was achieved in DSSC devices, which is close to that of Pt/FTO electrode (6.19%). Therefore, the novel architecture of graphene wrapped

^{*}Corresponding author. Tel: +86 21 5241 1620. E-mail address: huangfq@mail.sic.ac.cn (F.Q. Huang)

Download English Version:

https://daneshyari.com/en/article/7851659

Download Persian Version:

https://daneshyari.com/article/7851659

<u>Daneshyari.com</u>