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a b s t r a c t

The analytical solutions of first and second Stokes’ problems are discussed, for infinite and finite-depth

flows of a Newtonian fluid in planar geometries. Problems arising from the motion of the wall as a

whole (one-dimensional flows) as well as of only one half of the wall (two-dimensional) are solved and

the wall stresses are evaluated.

The solutions are written in real form. In many cases, they improve the ones in literature, leading to

simpler mathematical forms of velocities and stresses. The numerical computation of the solutions is

performed by using recurrence relations and elementary integrals, in order to avoid the evaluation of

integrals of rapidly oscillating functions.

The main physical features of the solutions are also discussed. In particular, the steady-state

solutions of the second Stokes’ problems are analyzed by separating their ‘‘in phase’’ and ‘‘in quadrature’’

components, with respect to the wall motion. By using this approach, stagnation points have been

found in infinite-depth flows.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The analytical solution of Stokes problems for a Newtonian fluid
in a planar geometry is here revised, by following the seminal paper
of Liu [1]. A fluid region is bounded by a rigid wall, which moves
with a prescribed velocity having fixed direction, parallel to the wall.
The fluid and the wall are at rest at the initial time. By following the
literature, wall velocities constant (first Strokes’ problem) or period-
ical (second) in time will be assumed. Moreover, flows in which the
wall moves as a whole (one-dimensional) and half wall moves,
while the other one is kept fixed, (two-dimensional) will also be
investigated. Finally, the depth of the fluid region will be assumed
infinite or finite. In these latter kinds of flow, a free surface is
assumed to bound the fluid region.

The solution of the first Stokes’ problem in an infinite-depth
flow has a well known analytical structure, related to the
complementary (real) error function. Solutions of the second
problem in an infinite-depth flow have been discussed in [2–4]
and in many other papers. They are usually written in terms of
error functions of complex arguments, because in the correspond-
ing real forms integrands containing oscillatory functions appear,
the numerical integration of which can lead to severe errors [5].

Recently, these results have been reconsidered in the framework
of two-dimensional flows. In the paper [6] the steady states have
been found, while Liu [1] generalizes these solutions, by giving also
the transient contributions. The effects of side walls on the Stokes

flow on a planar wall have been recently investigated in [7]. Besides
the first and second Stokes problems, the flows induced by a constant
accelerating plate and by a plate that applies a constant stress are also
investigated. This important paper opens the way to the comparison
with experiments, where effects of side walls are rarely negligible.

Despite the subject is a quite old one [8], many issues about
analytical solutions and their numerical computation appear to be
improved, in particular for two-dimensional flows. The present
paper is an attempt to fill some of these lacks. It is organized as
follows. In Section 2, the solutions of one-dimensional first and
second problems are briefly discussed, then they are extended to
the finite-depth case in Section 3. The solution of two-dimensional
problems is then faced, for infinite (Section 4) and finite-depth
(Section 5) flows. Finally, conclusions are offered in Section 6.

2. One dimensional infinite-depth flows

A Newtonian fluid having kinematical viscosity n fills the half
space y40, bounded by a solid wall at y¼0. Initially (tr0), fluid and
wall are at rest. The wall starts to move at time t¼0þ with a given
velocity (say q), directed along the axis x. The resulting fluid velocity
(u) is assumed to be directed along x and to depend on y and t, only.
As well known, this flow is described by Stokes’ problem:

@tu¼ n@2
yyu,

uð0,tÞ ¼ qðtÞ, uðþ1,tÞ � 0,

uðy,0Þ � 0,

8><
>:
the solution of which is easily found in terms of Laplace transform
in time (qðLÞ and uðLÞ are the transformed functions of q and u,
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respectively):

uðLÞðy,sÞ ¼ expð�byÞqðLÞðsÞ: ð1Þ

Here, the complex variable s has a positive real part and b¼
ffiffiffiffiffiffiffi
s=n

p
(the principal branch of the root is used). In the following, two
different wall velocities will be considered: constant, i.e. qðtÞ � 0 as
to0 and qðtÞ � u0 as t40, which leads to the first Stokes’ problem
and periodical, i.e. qðtÞ ¼ u0cosðotþyÞ as t40, corresponding to the
second Stokes’ problem.

2.1. First Stokes’ problem

The solution of this classical problem is here summarized, for
later convenience. The Laplace transform of the wall velocity is

qðLÞðsÞ ¼
u0

s
, ð2Þ

so that the time derivative of the non-dimensional velocity
U1 ¼ u1=u0 (non-dimensional quantities will be indicated by
capital symbols, while the subscript 1 refers to the first solution
of the present paper) is obtained through a Laplace antitransform
of the general solution (1):

@tU1 ¼
1

2pi

Z mþ i1

m�i1
ds expðts�ybÞ ¼: F1, ð3Þ

m being a suitable positive real number. The function F1 is
calculated by applying Cauchy’s theorem to the integral of
expðts�ybÞ=ð2piÞ on the path of Fig. 1a and then by performing
the limit as M-þ1. The two resulting integrals are evaluated
along the lower and upper paths of Fig. 1b: it is found that their
sum gives

ffiffiffiffi
p
p

. As a consequence, F1 assumes the following form:

F1ðy,tÞ ¼
1

2
ffiffiffiffiffiffi
pn
p yt�3=2exp �

y2

4nt

� �
: ð4Þ

Once it is inserted in Eq. (3), an integration in time leads to the
classical solution:

U1ðY ,TÞ ¼
2ffiffiffiffi
p
p

Z þ1
Y=ð2

ffiffi
T
p
Þ

dZ e�Z
2

¼ erfc
Y

2
ffiffiffi
T
p

� �
, ð5Þ

in which lengths and times are non-dimensionalized with n=u0

and n=u2
0, respectively. It can be observed that the velocity (5)

depends on Y and T through the time-rescaled variable
Y 0 ¼ Y=ð2

ffiffiffi
T
p
Þ: written in terms of a function of Y 0, the above

velocity will be indicated hereafter by U01ðY
0Þ. The wall stress w1

follows in non-dimensional form as W1 ¼w1=ðru2
0Þ, r being the

fluid density. By using the solution (5), one obtains:

W1ðTÞ ¼ �1=
ffiffiffiffiffiffi
pT
p

: ð6Þ

2.2. Second Stokes problem

In the second Stokes’ problem, the Laplace transform of the
wall velocity is

qðLÞðsÞ ¼
u0

2

e�iy

sþ io þ
eþ iy

s�io

� �
, ð7Þ

so that the general solution (1) is specified in the following one:

U2 ¼
1

2

8>><
>>:e�iðotþyÞ 1

2pi

Z mþ i1

m�i1
ds

exp½tðsþ ioÞ�yb�
sþ io|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H þ
2

þeþ iðotþyÞ 1

2pi

Z mþ i1

m�i1
ds

exp½tðs�ioÞ�yb�
s�io|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H�
2

9>>=
>>;: ð8Þ

The time derivatives of the functions H2
7 are easily evaluated

in terms of F1, indeed: @tH
7
2 ¼ expð7 iotÞF1. Once the proper

form of the function F1 (4) is inserted into the above relations and
they are integrated in time, one obtains:

H7
2 ðy,tÞ ¼H7

2 ðy,0Þþ
y

2
ffiffiffiffiffiffi
pn
p

Z t

0
dtt�3=2exp 7 iot� y2

4nt

� �
: ð9Þ

Notice that, in order to have u2ðy,0Þ � 0 for any initial phase y,
H7

2 ðy,0Þmust vanish, as it can be also proved by integrating along
the path of Fig. 1a their definitions (8) evaluated in t¼0. The
functions H2

7 (9) with H7
2 ðy,0Þ � 0 are then inserted into the

formula (8) and the non-dimensional quantities T ¼ot and
Y ¼ yðo=nÞ1=2 are used, according to [4]. In this way, the solution:

U2ðY ,TÞ ¼
2ffiffiffiffi
p
p

Z þ1
Y=ð2

ffiffi
T
p
Þ

dZ e�Z
2

cos Tþy�
Y2

4Z2

� �
ð10Þ

follows. This solution is the real form of the one in [3] for y¼ 0
and p=2 and of the solution in [4].

The numerical evaluation of the solution (10) is not a trivial
task, due to the presence of 1=Z2 in the argument of the
trigonometric function. Numerical integration schemes lead to

+iM

−iM

s = (−x) e+i�

s = (−x) e−i�

+iH

−iH

�

Fig. 1. Integration paths in the plane of s: for the evaluation of the function F (a) and of the integrals I1,2.
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