
Flow due to non-coaxial rotation of a porous disk and a second grade fluid
rotating at infinity
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a b s t r a c t

An exact solution for the three-dimensional flow due to non-coaxial rotation of a porous disk and a

second grade fluid at infinity is obtained. It is shown that for uniform suction or uniform blowing at the

disk, an asymptotic profile exists for the velocity distribution. The velocity depends on two parameters:

one of them is the suction parameter or blowing parameter and the other is the visco-elastic parameter.

Furthermore, it is found that when the value of the visco-elastic parameter is fixed, the velocity

decreases with an increase in the value of the suction parameter and when the value of the suction

parameter is fixed, the velocity increases with an increase in the value of the visco-elastic parameter.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An exact solution for the flow of an incompressible second
grade fluid due to non-coaxial rotation of a porous disk in an
infinite region is obtained. Obtaining an exact solution for a flow
of a second grade fluid is very important, because the governing
equation of a second grade fluid has two non-linear terms: one of
them is due to the inertia term and the other is due to visco-
elastic term. Exact solutions provide a standard for checking the
accuracies of many approximate methods such as numerical or
empirical. The accuracy of the results can be established by a
comparison with an exact solution. The flow over boundaries of
porous materials has many applications in practice such as
boundary layer control.

The problem considered in this paper is an extension of the
flow of a viscous fluid due to non-coaxial rotation of a porous disk
and a fluid at infinity to that of a second grade fluid. It is well
known that the governing equation of a second grade fluid is a
third order partial differential equation. The no-slip condition
provides two conditions, then, one needs an additional condition.
It is shown that in the problem considered in this paper due to the
extension of the flow region to infinity, no-slip condition is
sufficient.

The steady flow in an infinite region due to non-coaxial
rotation of a porous disk has been investigated by many authors.
Flow due to eccentrically rotating porous disk and a fluid at

infinity was studied in [1], assuming that the porous disk and the
fluid at infinity are rotating with the same angular velocity. Flow
due to eccentric rotation of a porous disk and a fluid at infinity,
but with different angular velocity, has been investigated in [2].
The MHD flow and heat transfer due to eccentric rotation of a
porous disk and a fluid at infinity was studied in [3]. An unsteady
flow due to eccentrically rotating porous disk and a fluid at
infinity in the case of the porous disk executing non-torsional
oscillations in its own plane was studied in [4]. The MHD flow due
to non-coaxial rotation of a porous disk and a fourth grade fluid at
infinity has been investigated in [5]. The flow induced by non-
coaxial rotation of a porous disk executing non-torsional oscilla-
tions and a fluid of second grade at infinity was studied in [6].

In this paper, the three-dimensional flow of a second grade
fluid is studied. It is shown that for uniform suction or uniform
blowing at the disk, an asymptotic profile exists for the velocity
distribution. The velocity depends on two parameters; one of
them is the suction or blowing parameter and the other is the
visco-elastic parameter. For the large values of the suction
parameter, the velocity changes appreciably near the porous
plate. However, the velocity increases with increase in the value
of the visco-elastic parameter.

2. Basic equations

The equation of motion for a fluid in the absence of the body
forces is

rDu

Dt
¼rUr ð1Þ
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where r is the density of the fluid, u is the velocity, r is the stress
tensor and D/Dt represents the material derivative. The continuity
equation for the velocity is

rUu¼ 0 ð2Þ

Eqs. (1) and (2) can be applied to all types of incompressible
Newtonian and non-Newtonian fluids. The stress depends on the
local properties of the fluids. The relation between the stress and
the local properties of the fluid is called the constitutive equation.
The constitutive equation for an incompressible second grade
fluid is in the following form [7]:

r¼�pIþmA1þa1A2þa2A2
1 ð3Þ

where m, a1 and a2 are the material constants and An represents
the Rivlin–Ericksen tensor defined in [8] as

A0 ¼ I, A1 ¼ruþðruÞT

Anþ1 ¼
@

@t
þuUr

� �
AnþAnUruþðruÞTUAn ð4Þ

where t is the time, p is the pressure and I is the identity tensor.
The Clausius–Duhem inequality and the condition that Helmholtz
free energy is minimum in equilibrium provide the following
restrictions [9,10]:

mZ0, a1þa2 ¼ 0, a1Z0 ð5Þ

A comprehensive discussion on the restrictions for m, a1 and a2

can be found in [11].
When Eq. (3) is substituted into Eq. (1), one obtains the

following equation [12]:

@u

@t
þuUru¼�

1

r
rpþvr2uþbðr2xÞu ð6Þ

where condition (5) is used and o¼r�u.
The physical model and coordinate system are denoted in

Fig. 1. A Cartesian coordinate system in which z-axis is normal to
the porous disk and the plane of the disk is z¼0 is introduced. The
axis of rotation of the disk and that of fluid at infinity are assumed
to be in the plane x¼0, and the distance between the axes is l. The
disk and the fluid at infinity are rotating about the axes with the
same angular velocity O. The boundary conditions are

u¼�Oy, u¼Ox, w¼�w0 at z¼ 0

u¼�OyþOl, u¼Ox, w¼�w0 at infinity ð7Þ

where u, u and w are the Cartesian components of velocity. The
boundary conditions given by (7) suggests a velocity field in the
following form:

u¼�Oyþ f ðzÞ, u¼OxþgðzÞ, w¼�w0 ð8Þ

The velocity field can be considered as the summation of
a helical motion (�Oy,Ox,�w0) and a translational motion
(f(z), g(z), 0). The boundary conditions given by (7) require

f ð0Þ ¼ 0, gð0Þ ¼ 0, f ð1Þ ¼Ol, gð1Þ ¼ 0 ð9Þ

Substituting the velocity components given by (8) into (6),
one finds

�ðO2xþOgþw0f 0Þ ¼ �
1

r
@p

@x
þvf 00�bw0f 000 ð10Þ

�ðO2y�Of þw0g0Þ ¼ �
1

r
@p

@y
þvg00�bw0g000 ð11Þ

0¼�
1

r
@p

@z
� ðOxþgÞg000 þð�Oyþ f Þf 000
� �

ð12Þ

Differentiation of qp/qx and qp/qy with respect to z and qp/qz

with respect to x and y gives

�bw0f 000 þvf 00 þbOg00 þw0f 0 þOg ¼ C1 ð13Þ

�bw0g000 þvg00�bOf 00 þw0g0�Of ¼ C2 ð14Þ

Eqs. (13) and (14) are general and can be applied to the case of
non-coaxial rotation of two disks. The condition at infinity
provides C1¼0 and C2¼�O2l.

3. Solution of the problem

Some special cases are considered. When w0 is zero, Eqs. (13)
and (14) reduce to

vf 00 þbOg00 þOg ¼ 0, vg00�bOf 00�Of ¼�O2l ð15Þ

The solutions of Eq. (15) are

f

Ol
¼ 1�e�ax cosbx,

g

Ol
¼ e�ax sinbx ð16Þ

where

x¼ ðO=2vÞ1=2z, a¼ f½ð1þe2Þ
1=2
�e�=ð1þe2Þg

1=2

b¼ f½ð1þe2Þ
1=2
þe�=ð1þe2Þg

1=2
, e¼ bO=v

When b¼0, Eqs. (13) and (14) reduce to

vf 00 þw0f 0 þOg ¼ 0, vg00 þw0g0�Of ¼�O2l ð17Þ

The solutions have been given in [1] in the following form:

f

Ol
¼ 1�e�cx cosdx,

g

Ol
¼ e�cx sindx ð18Þ

where

c¼
ffiffiffi
2
p

sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs4þ1Þ1=2

þs2

q
, d¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs4þ1Þ1=2

�s2

q
, s¼w0=2ðOvÞ1=2

ð19Þ

The blowing case solution is given by

f

Ol
¼ 1�e�gx cosdx,

g

Ol
¼ e�gx sindx ð20Þ

where

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl4
þ1Þ1=2

þl2
q

�
ffiffiffi
2
p

l, d¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl4
þ1Þ1=2

�l2
q

, l¼�s ð21Þ

For w0¼0 and b¼0, Eqs. (13) and (14) reduce to

vf 00 þOg ¼ 0, vg00�Of ¼�O2l ð22Þ

The solutions are

f ¼ 1�e�x cosx, g ¼ e�x sinx ð23Þ
Fig. 1. Flow geometry and coordinate systems.
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