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Synge’s concept of stability applied to non-linear normal modes
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Abstract

Synge’s concept [J.L. Synge, On the geometry of dynamics, Philos. Trans. R. Soc. London, Ser. A 226 (1926) 33–106] of stability is
introduced and shown to be equivalent to the orbital stability in holonomic conservative systems of two-degrees-of-freedom. This furnishes
an analytical tool to study the orbital stability in strongly non-linear systems. This concept is shown to be applicable to the stability analysis
of non-linear normal modes, for which Liapunov’s first method generally fails. Integrally related numbers are found such that, if the ratio of
linear natural frequencies is close to one of the numbers, then a normal mode may lose stability at a small amplitude. These numbers depend
on the symmetry or asymmetry of system with respect to the origin of the configuration space. Some examples are given to demonstrate the
stability analysis of the normal modes and to verify the integrally related numbers.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The stability of periodic motions is of interest in holonomic,
conservative non-linear systems of two-degrees-of-freedom.
The response in free vibration as well as forced response is
greatly influenced by the stability or instability of periodic
motions present in the system. Unstable motions are some-
times ignored with the view that the response is physically
not realized. However, two important phenomena are observed
by the loss of stability [1–4]; that is, (i) a stable coupled
mode (or bifurcating mode) is formed, giving rise to a stable
coupled-mode response under a single mode excitation, and
(ii) at large forcing amplitudes an orbit close to the unstable
mode is attracted to a strange attractor, leading to chaotic
responses.

It is well-known that every motion of a simple pendulum is
unstable in the sense of Liapunov because the period varies with
amplitude. Similarly, a periodic motion in a multi-degree-of-
freedom system is generally unstable in the sense of Liapunov.
For this reason, orbital stability was proposed by Poincaré. The
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orbital stability involves the Poincaré map. Since the motion
remains in a three-dimensional energy manifold, the local sur-
face of section is two dimensional. The Poincaré map is usually
obtained by numerical computations.

Synge [5] studied dynamics in the view of Riemannian geom-
etry and proposed several concepts of stability. One is closely
related with orbital stability. His stability equation is expressed
as a single second-order differential equation with periodic co-
efficients. This leads to a two-dimensional phase space, rem-
iniscent of the two-dimensional Poincaré section. It will be
shown that his concept is equivalent to orbital stability. There-
fore, his concept furnishes an analytical tool to study the orbital
stability in strongly non-linear systems.

Synge’s concept is applied to the stability analysis of non-
linear normal modes. To this end, the solution of the normal
modes is required beforehand. The normal modes are defined
on the basis of Liapunov’s existence theorem [6–9]; i.e., two
normal modes exist in the neighborhood of a stable equilibrium
configuration. A normal mode is written in Fourier series, and
may be approximated by the first or a few harmonic terms
in each coordinate. By the method of harmonic balance, the
solution may be obtained. By substituting this solution into
Synge’s stability equation, the stability chart can be constructed
to determine the stability of normal modes.
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The conditions are investigated for the stability loss of normal
modes at small amplitude. It is shown that if the ratio of linear
natural frequencies is not integrally related, then every normal
mode is stable at small amplitude and may lose stability as
the amplitude increases. These integrally related numbers are
derived for the system having or not having symmetry with
respect to the origin of the configuration space.

When Liapunov’s first method is applied to the stability anal-
ysis of normal modes, the system of variational equations is
generally expressed by two coupled second-order differential
equations with periodic coefficients. It is practically impossible
to construct the stability chart.

2. Synge’s concept of stability

Consider a holonomic conservative system in which the
kinetic energy T and potential energy V are written as

T = 1

2

2∑
ij=1

mij (x)ẋi ẋj = 1

2
〈M(x)ẋ, ẋ〉,

V = V (x), K + V = h, (2.1)

where x = (x1, x2) and ẋ = (ẋ1, ẋ2) are the generalized coordi-
nates and velocities, respectively, M(x)=(mij (x)) is the inertia
matrix, h the total energy, and the symbol 〈, 〉 denotes the inner
product of two vectors, as will be used throughout. For given
h, the motion remains in the region given by

�(h) =
{

x ∈ R2 |h − V (x)�0
}

. (2.2)

Assume that �(h) is bounded. The interior is denoted by
int �(h), and the boundary by ��(h).

Synge [5] studied dynamics in the view of Riemannian
geometry for which the line element ds is defined by

ds2 = 〈M dx, dx〉 (2.3)

and the angle � between two vectors, a = (a1, a2) and b =
(b1, b2), is given by

cos � = 〈Ma, b〉√〈Ma, a〉√〈Mb, b〉 . (2.4)

He defined the disturbance � between configurations of the pe-
riodic trajectory C and a perturbed trajectory C∗ by the condi-
tion that � is orthogonal to C, as shown in Fig. 1(a). By use of
tensor analysis he derived the equation governing the magni-
tude �, for fixed h,

�̈ + Q(t)� = 0,

Q(t) = Kv2 + 3�2v2 +
∑

Vijninj , (2.5)

where v is the velocity of C, � the curvature of C, Vij =
�2V/�xi�xj , n= (n1, n2) the unit normal to C, and K Gaussian
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Fig. 1. Definition of disturbance. (a) Disturbance �, (b) perturbed velocity.

curvature written as

K = 1
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(2.6)

where m = m11m22 − m2
12. Then C is said to be stable in the

kinematico-statical sense (or simply S-stable) if the value of �,
for every solution of Eq. (2.5), is permanently small.

By use of the definition of �, the time derivative �̇ may be
geometrically derived. Let v1 and v2 be the velocities of C and
C∗ at P1 and P2, respectively, as shown in Fig. 1(b), in which
the line P1P2 is orthogonal to C. Then it is clear that

�̇ = v2 sin �, (2.7)

where � is the angle between v1 and v2.

Remark 1. The Riemannian metric given by Eq. (2.3) is equiv-
alent to the Euclidean norm; i.e., there are two positive num-
bers, k1 and k2, such that

k1

(
dx2

1 + dx2
2

)
< 〈M dx, dx〉 < k2

(
dx2

1 + dx2
2

)
. (2.8)

Therefore, � may be defined by Euclidean norm in the practice
of stability analysis.

Theorem. At every fixed total energy, a periodic trajectory in
the system given by Eq. (2.1) is orbitally stable if and only if it
is S-stable.

Proof. See Appendix.

Remark 2. Synge’s concept furnishes an analytical tool to
study the orbital stability in strongly non-linear systems.

3. Stability analysis of normal modes

To analyze the stability of normal modes, the solution of
the normal modes should be known beforehand. The solution
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