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A dual state variable model of the van der Pol oscillator
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Abstract

A new, “dual” state variable (DSV) formulation is used to construct a model of the van der Pol oscillator. The model is valid for small
degrees of non-linearity, and results are superior to those from a common perturbation technique, especially as non-linearity begins to increase.
The DSV formulation utilizes a unique state space, and behavior in this space is illustrated for a wider range of non-linearity.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The dual state variable (DSV) formulation provides a unique
and useful structure for modeling non-linear oscillators. It has
previously been applied to the non-linear pendulum and the
Duffing oscillator in [1], and a description of its mathematical
consequences is given there. In the DSV formulation, a second-
order ordinary differential equation (ODE) of interest is paired
with a “dual” ODE of the analyst’s choosing, resulting in a
formulation with four state variables. The two state variables
representing the positions of the primary and dual oscillators
are plotted against each other in a two-dimensional projection
of the state trajectory. A separate projection of the state tra-
jectory contains information about the rates of change of these
variables.

When the dual equation and its initial conditions are judi-
ciously chosen, state behavior can often exhibit a high degree
of symmetry. That symmetry, along with some useful mathe-
matical features of the formulation, can allow construction of
accurate approximate solutions, even when non-linearities are
large [1]. In this paper, the DSV formulation is applied to the
van der Pol oscillator to achieve results that are superior to a
perturbation technique. The analysis differs significantly from
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that described in [1] because the van der Pol oscillator has an
asymmetric waveform, and it is non-conservative.

2. Summary of the dual state variable equation set

If the equation of interest, or primary equation, is stated as

ẍ = F1(x, ẋ, y, ẏ, t) (1)

and the dual equation is stated as

ÿ = F2(y, ẏ, x, ẋ, t), (2)

where t is the independent variable, then the (dual) state variable
equations are defined as follows [1]:

ẋ = �x − �y, (3)

ẏ = �x + �y, (4)

�̇ = xF 1 + yF 2

x2 + y2 + �2 − �2, (5)

�̇ = xF 2 − yF 1

x2 + y2 − 2��. (6)

It is useful to employ polar coordinates �, � when describing
the state variables x and y. In particular, after conversion to
polar coordinates, (3) and (4) become

�̇ = �� (7)
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Fig. 1. A typical DSV state space representation of motion, in this case for
the non-linear pendulum.

and

�̇ = �. (8)

The significance of � and � is apparent from these equations: �
is a measure of the normalized rate of change of �, and � quan-
tifies the angular motion of the x, y state point. The trajectory
in the �, � projection of the state space therefore presents ve-
locity information, and the �, � projection is consistent with the
s-plane sometimes used in engineering analysis [1]. It is con-
venient to plot x, y in a two-dimensional projection of the state
space, and �, � in a separate projection, as shown in Fig. 1.

Further analysis of the DSV equations shows that the solu-
tions for x(t) and y(t) can be written as follows [1]:

x = e
∫

� dt

[
x0 cos

(∫
� dt

)
− y0 sin

(∫
� dt

)]
, (9)

y = e
∫

� dt

[
y0 cos

(∫
� dt

)
+ x0 sin

(∫
� dt

)]
. (10)

The functions � and � cannot generally be identified in closed
form for non-linear ODEs, but approximations for them can
often be devised based on a simplified model of state space
behavior, and then used in (9) and (10) to approximate the
motion of the oscillator.

3. The van der Pol oscillator and a “dual” equation

This oscillator has been studied in great detail for over 75
years [2]. The van der Pol equation is

ẍ = −�
(
x2 − 1

)
ẋ − ax, (11)

where � and a are positive constants. By the transformation
t → √

at , Eq. (11) can be recast as

ẍ = −�
(
x2 − 1

)
ẋ − x, (12)

where � = �/
√

a [2]. A periodic solution is known to exist
for this oscillator, and the shape of the waveform has been

Fig. 2. A sketch of a van der Pol wave form x and that of a suitably chosen
dual equation y. Selected reference points are noted.

qualitatively established [2]. This is the starting point for the
analysis.

Any ODE of form (2) can serve as a dual equation, but the
DSV approach is most useful when the dual equation in y is
chosen to enhance symmetry in the x, y state space. Inspection
of the van der Pol waveform x(t) suggests that a vertically
reflected and time-shifted version of the waveform, as shown
in Fig. 2, will yield fairly symmetric behavior when y is plotted
against x. In this figure, initial conditions are chosen so that peak
values of y occur when x crosses the zero axis. Other choices
can also lead to a certain degree of symmetry, for instance by
allowing the peaks of the x and y oscillations to coincide, and
such choices may be productive as well.

The waveform of the dual equation is seen to be a time-
reversed version of the van der Pol equation. It can be con-
structed by transforming the van der Pol equation such that
x → y and t → −t . The resulting dual equation is

ÿ = +�
(
y2 − 1

)
ẏ − y. (13)

Note that (12) tends toward an asymptotically stable limit cycle,
but for (13), the limit cycle is unstable.

4. Construction of the DSV state space plots

Use of the DSV formulation requires a thorough conceptual
understanding of its unique state space. Because it is unfamiliar,
an exposition of state space construction precedes mathematical
analysis.

By reference to Fig. 2, a plot of x vs. y can be sketched
(Fig. 3). The exact shape of the orbit cannot be inferred from
Fig. 2, but symmetry about the 45◦ and 135◦ axes is clear.
Rapidly and slowly evolving regions of the plot can be identified
by comparing the rates of change at points 0 and 4 in Fig. 2.

A sketch of the �, � projection of the state trajectory is pro-
vided in Fig. 4. Construction of this graph begins with iden-
tification of the points at which the trajectory crosses the �-
axis (� = 0). By (7), this will occur whenever � is a maximum
or a minimum, and by symmetry in the x, y plot, that occurs
when the x, y orbit crosses the axes of symmetry at � = 45◦
and 135◦, i.e. when y = ±x. These are points 0 and 4. Point
0 is associated with a slowly evolving point on the x, y orbit,
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