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a b s t r a c t

This work investigates the effect of a high-frequency voltage (HFV) on the pull-in instability in a

microstructure actuated by mechanical shocks and electrostatic forces. The microstructure is modelled as

a single-degree-of-freedom mass-spring-damper system. The method of direct partition of motion is used

to split the fast and slow dynamics. Analysis of steady-state solutions of the slow dynamic allows the

investigation of the influence of the HFV on the pull-in. The results show that adding HFV rigidifies the

system, creates new stable equilibria and suppresses the pull-in instability for adequate high-frequency

voltages. To illustrate the applicability of the result, a specific capacitive microelectromechanical system

consisting of a clamped–clamped microbeam is considered.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Analysis of vibrational behavior of Microelectromechanical
systems (MEMS) is an active topic of research with applications
in many engineering fields such as communications, automotive,
robotics and others. One of the most critical issues in the design of
MEMS is their reliability and survivability under mechanical shocks
and electrical loads. In the case of capacitive MEMS devices the
pull-in [1–3] constitutes one of the main roots to the device failure.
Pull-in is a structural instability phenomenon resulting from the
interaction between elastic and electrostatic forces in MEMS
devices. This instability results from the unbalance between the
electric actuation and the mechanical restoring force leading a
movable electrode to hit a stationary electrode causing stiction and
short circuit problems and hence the failure in the device’s function
[4]. Several works [5,6] investigated the static pull-in phenomenon
and performed techniques to predict its occurrence by determining
the largest DC voltage for which the system operates in a stable
behavior. The dynamic pull-in was studied under various loads,
such that step voltage [7], AC harmonic voltage [8,9] and mechan-
ical shock load [10,11]. It was shown that the dynamic actuation
reduces drastically the static pull-in threshold. Nayfeh and co-
workers [8,9] studied the dynamic pull-in of MEMS resonators
actuated by a resonant AC voltage. They found three distinct
mechanisms leading to the dynamic pull-in instability. The first
mechanism is the cyclic-fold or symmetry instabilities, the second

mechanism depends on the system transient dynamics and the
number of coexisting attractors and the third one is characterized
by the sensibility to initial conditions due to the existence of
homoclinic tangles. Moreover, Younis and co-workers [10,11]
showed that the combination of a shock load and an electrostatic
actuation makes the instability threshold much lower than the
threshold predicted considering the effect of the shock alone or
the electrostatic actuation alone. They also studied the effects of the
shape of the shock pulse and its duration on the pull-in threshold.
Recently, Ibrahim and Younis [12] presented a theoretical and
experimental investigation of the response of electrostatically
actuated parallel-plate resonators subjected to mechanical shocks.
They concluded that a resonator may experience early dynamic
pull-in instability depending on the shock duration.

Keeping a MEMS device operating in a stable attracting regime
away from the pull-in instability limit presents a major interest from
design, fabrication process and commercialization point of view. This
challenge has motivated researchers developing strategies to avoid the
pull-in, and hence, increase the range of movable electrode. For
example, Castañer et al. [13] used an interesting technique based on
charge control, instead of voltage control. This method allows extend-
ing the travel range, but it is limited by the charge pull-in [14]. Lenci and
Rega [15] used a control method based on adding superharmonics to a
reference harmonic excitation and showed the possibility of shifting
the dynamic pull-in towards high excitation amplitudes. Lakrad and
Belhaq [16] showed that applying an appropriate high-frequency
harmonic voltage can delay the static pull-in.

In the present paper, a HFV is used to suppress the pull-in instability
induced by the combined effect of electrostatic and shock forces. The
proposed method is applied to a simplified mass-spring-damper
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system modelling the dynamic of a capacitive MEMS. It is worth noting
that the problem of studying the effects of high-frequency excitations
on the dynamic of mechanical systems has been examined during the
last decade by a number of authors; see for instance [17] and references
therein. Attention was focused on the effect of high-frequency excita-
tions on the natural frequencies [18,19], symmetry breaking [20], limit
cycles [21], hysteresis [22,23] and pull-in instability [16].

The rest of the paper is organized as follows. The equation of motion
modelling the dynamic of the MEMS device is presented as a mass-
spring-damping oscillator in Section 2. Then, the method of direct
partition of motion is performed on the oscillator over the fast dynamic
and the main equation governing the slow dynamic of the MEMS
device is derived. In Section 3, we expose the main analytical and
numerical results of our study, while in Section 4 an application to a real
capacitive MEMS is considered. Section 5 concludes the work.

2. Formulation of the problem and slow dynamic

Consider the following non-dimensional equation

Xuuþ2xXuþX ¼
a

ð1�XÞ2
þ
bcosðOtÞ
ð1�XÞ2

þ f0gðtÞ ð1Þ

representing a single-degree-of-freedom model of a capacitive
MEMS device employing a DC and AC voltages as actuator and
subjected to a mechanical shock. The primes denote the derivatives
with respect to the non-dimensional time t, X is the normalized
displacement with respect to the initial gap of the movable mass
and x is the damping coefficient. The amplitude and the pulse shape
of the shock are denoted by f0 and gðtÞ, respectively. Note that X¼1
corresponds to the pull-in and the left hand side of Eq. (1) is
considered as a linear mechanical oscillator. However, non-linear-
ities can arise in the mechanical subsystem through non-linear
mechanical stiffness. The choice of considering a linear mechanical
model can be justified by the fact that the thickness of the movable
electrode is greater than the initial gap. The first term in the right
hand side of Eq. (1) represents the effect of the DC voltage, the
second term is related to the AC actuation and the last one describes
the effect of the shock load. The parameters a and b are first treated
as independent entities in the analysis, even though they are
related in real capacitive MEMS. This does not impact our results as
shown in Section 4. Note that in [16] the authors shown that it is
possible, in this case, to prevent the electrostatically induced pull-
in instability for a range of values of the amplitude and the
frequency of the high-frequency AC. The high-frequency O is
normalized with respect to the natural frequency and is taken
very large with respect to unity. In this paper, we consider that the
natural period Tp of the microstructure is very small compared
to the duration T of the shock. Consequently, the shock force is
experienced as a quasi-static force that stays for some time and is
then removed [10].

Eq. (1) contains a slow dynamic which describes the main
motion at time-scale of the microstructure natural vibration and a
fast dynamic at time-scale of the high-frequency voltage. To obtain
the main equation governing the slow dynamic of the device, we
implement the method of direct partition of motion [17]. Two
different time-scales are introduced: a fast time T0 ¼ Z�1t and a
slow time T1 ¼ t and the displacement of the mass XðtÞ is split up
into a slow part Z(T1) and a fast part fðT0,T1Þ as follows:

XðtÞ ¼ ZðT1ÞþfðT0,T1Þ ¼ ZðT1ÞþZ2 ~fðT0,T1Þ ð2Þ

Here the positive parameter Z is introduced to measure the
smallness of other parameters ð0oZ51Þ. The slow part Z(T1)
takes into account the transient motion composed of the natural
damped motion of the microstructure and the response to the
shock force. The high-frequency is taken as O¼ Z�1. The fast

motion and its derivatives are assumed to be 2p�periodic func-
tions of the fast time T0 with zero mean value with respect to it.
Thus, /XðtÞS¼ ZðT1Þwhere /:S¼ ð1=2pÞ

R 2p
0 ð:ÞdT0 defines the fast

time-averaging operator. Introducing Dn
m ¼ @

n=@Tn
m yields

d

dt
¼ Z�1D0þD1þOðZÞ ð3Þ

d2

dt2
¼ Z�2D2

0þZ
�12D0D1þD2

1þOðZÞ ð4Þ

Substituting (3) and (4) into (1) leads to the following equation

ðD2
0
~fÞþ2ZðD0D1

~fÞþZ2ðD2
1
~fÞþðD2

1ZÞ

þ2x½ðD0
~fÞþZðD1

~fÞþðD1ZÞ�þZþZ2 ~f

¼
a

ð1�Z�Z2 ~fÞ2
þ

bcosðT0Þ

ð1�Z�Z2 ~fÞ2
þ f0gðT1Þ ð5Þ

In what follows we set b¼Oð1Þ and x¼ Z ~x. All the parameters with
tildes are of order O(1).

The dominant terms depending on T0 up to the order O(1) in (5)
are

ðD2
0
~fÞ ¼

b
ð1�Z�Z2 ~fÞ2

cosðT0Þ ð6Þ

Thus, up to this leading order, the fast motion is given by

~fðT0,T1Þ ¼ �
b

ð1�ZÞ2
cosðT0ÞþOðZÞ ð7Þ

Now averaging Eq. (5) over a period of the fast time scale T0 leads to
the following equation

ðD2
1ZÞþ2xðD1ZÞþZ

¼
a

ð1�Z�Z2 ~fÞ2
þ

bcosðT0Þ

ð1�Z�Z2 ~fÞ2

* +
þ f0gðT1Þ ð8Þ

where

a
ð1�Z�Z2 ~fÞ2

* +
¼

a
ð1�ZÞ2

þOðZ3Þ ð9Þ

b
ð1�Z�Z2 ~fÞ2

cosðT0Þ

* +
¼�

b2

O2
ð1�ZÞ5

þOðZ3Þ ð10Þ

The equation of the slow dynamics up to the order OðZ3Þ can be
written as

ðD2
1ZÞþ2xðD1ZÞþZ ¼

a
ð1�ZÞ2

�
b2

O2
ð1�ZÞ5

þ f0gðT1Þ ð11Þ

Eq. (11) governs the transient slow dynamics of the movable elec-
trode and can be used to study the pull-in instability in the presence
of a high-frequency harmonic actuation. The present work focuses
attention only on steady-state equilibria. Through Eq. (11) one can
conclude that the DC voltage is softening the structure while the
HFV is hardening it. As a consequence, increasingbwill increase the
natural frequency of the structure and will damp quickly its free
vibrations. It is worth noting that the zeros of the slow dynamic,
Eq. (11), in the absence of the shock or after the end of its effect, are
the periodic solutions of Eq. (1). These zeros are obtained by solving
the following sixth order algebraic equation

Zð1�ZÞ5 ¼ að1�ZÞ3�
b2

O2
ð12Þ

It is clear that in the absence of the HFV i.e., for b¼ 0, the steady-state
equilibria are obtained by solving Zð1�ZÞ2 ¼ a. The static pull-in in this
case is obtained for the static tension ap ¼

4
27 ¼ 0:148 which corre-

sponds to the steady state displacement Zp ¼
1
3.
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