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a b s t r a c t

The mechanical response of an inflated spherical membrane–fluid structure in contact with rigid

parallel planes is studied. The membrane is assumed to be a two-dimensional non-linear elastic and

isotropic structure, while no assumption is imposed on the fluid. A numerical procedure is employed to

compute the equilibrium configurations of the membrane–fluid structure. This study provides

information regarding the contact force, stress distribution and pressure in the membrane and in the

enclosed fluid, respectively. It was observed that a transition between unwrinkled to partially wrinkled

configurations of the membrane occurs subjected to the loading conditions. Further investigation of the

wrinkled configurations is presented.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the present work the contact problem of a spherical
membrane–fluid structure with rigid parallel planes is analyzed.
The contact problem is formulated in terms of a general elastic
isotropic strain energy function, a general fluid and large
deformations. Examples of such membrane–fluid structures
undergoing large deformation due to contact appear in many
fields, e.g., biology (biological cells) and in the pharmaceutical
industry (microcapsules).

In this work the membrane is considered to be a structure
with thickness much smaller than any other dimension of the
structure. It is common to model such a thin structure as merely a
deformable surface and the thickness is not modeled explicitly
but, rather, accounted for by the constitutive law. It is further
assumed that the membrane stresses are only in-plane and
bending stiffness vanishes. These assumptions are consistent with
the leading-order model for small thickness of the three-
dimensional theory and thus valid only for thin films.

This problem was first studied in [1] using the Mooney strain-
energy function for the membrane. In [2] a similar contact
problem was used to determine the mechanical properties of a
cell membrane of an approximately spherical shape. In a more
recent work [3], the constitutive law of an HSA-Alginate Capsules
is determined by comparison of experimental data with a
theoretical analysis based on [2]. In all the previous works
mentioned above the presence of compressive stress is permitted

which is not physically admissible in membrane structures. It is
well known that for the case of shells, compressive stress may
result in lost of stability (buckling) once the compressive stress is
larger than some threshold related to the bending stiffness of the
shell. For the case of shells with vanishing bending stiffness,
namely membranes, the existence of compressive stress imme-
diately gives rise to lost of stability in the form of wrinkling.
In this study compressive stress are excluded, and membrane
wrinkling is considered, which is a more realistic model for the
membrane–fluid structure of interest. The conditions under
which wrinkling appears and the domain of wrinkling are
analyzed.

The wrinkling of thin-films has been studied by many
researchers. The relaxed energy approach was introduced in [4]
where the original energy was replaced by a relaxed energy that
can accommodate wrinkling in the thin-film. This approach was
used to study the mechanics of networks in [5], and in [6] an ideal
fabric model which admits wrinkling was developed. Other works
on wrinkling are [7] where a pulled spherical membrane is
considered and in [8] an approximation to the amplitude of the
wrinkling was developed.

In Section 2 the large deformation of the membrane is
presented by the two principal stretches and the principal
directions defined on the tangent plane of the membrane. The
equilibrium equation in the membrane and the fluid are discussed
in Section 3. Here also, the boundary conditions and the
constitutive laws of the membrane and fluid are introduced.
Section 4 describes in detail the numerical procedure employed,
while the numerical results of a particular choice of membrane
and fluid are presented in Section 5. The appearance of wrinkling
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in the membrane is studied in Section 6 and discussion of the
results and conclusions are presented in Section 7.

2. Deformation

Consider a membrane O which in its reference config-
uration k occupied a spherical surface of radius R, and the
reference configuration is taken to be a natural configuration.
Define X to be the position of a material point X on the reference
sphere k such that

X¼ RERðf; yÞ; ð1Þ

where the convected coordinates ff; y;Rg are the standard
spherical coordinate inducing the orthonormal right-
handed spherical basis fEfðf;yÞ;EyðyÞ;ERðf; yÞg with fA ½0;pÞ,
yA ½0;2pÞ and R¼ const. When an isotropic sphere comes to
contact with two parallel rigid planes the deformation is
necessarily axisymmetric (see Fig. 1). Hence, the position x of a
material point X on the close axisymmetric surface j can be
represented by

xðf; yÞ ¼ rðfÞerðc; yÞ; ð2Þ

where cðfÞ, and a second set of orthonormal right-handed
spherical basis fecðc; yÞ; eyðyÞ; erðc; yÞg is introduced. The motion
from the reference sphere k to the close axisymmetric deformed
surface j is described by the map

x¼ wkðX; tÞ: ð3Þ

The deformation gradient

F¼rx¼ g1 � G1
þg2 � G2

ð4Þ

is expressed by the covariant basis gi on j and the contravariant
basis Gi on k, where Latin indices have the range ði¼ 1;2Þ. The
covariant basis on j are defined by

g1 ¼
@x

@f
; g2 ¼

@x

@y
; ð5Þ

and the covariant basis on k are

G1 ¼
@X

@f
; G2 ¼

@X

@y
: ð6Þ

The contravariant basis on k satisfy the property

Gi � G
j
¼ dj

i; ð7Þ

where dj
i is the Kronecker Delta. Calculation yields

g1 ¼ r0erþrc0ec; g2 ¼ r sincey ð8Þ

and

G1 ¼ REf; G2 ¼ R sinfEy; ð9Þ

where ð Þ0 ¼ dð Þ=df. By (7) the contravariant basis on k are

G1
¼

Ef

R
; G2

¼
Ey

R sinf
: ð10Þ

Now, using (8) and (10) the deformation gradient (4) takes the
form

F¼
r0erþrc0ec

R
� Efþ

r sinc
R sinf

ey � Ey; ð11Þ

which can be also expressed (see [9]) by the convenient form

F¼ ll� Lþmm�M: ð12Þ

In (12) the coefficients l and m are the principal stretches, the
orthonormal vectors l and m belong to the tangent plane of j
denoted by Tj and the orthonormal vectors L and M belong to the
tangent plane of k denoted by Tk. Comparison of (11) and (12)
yields the relationships

l¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr0Þ2þðrc0Þ2

q
R

; m¼ r sinc
R sinf

;

l¼
r0erþrc0ec

lR
; m¼ ey; L¼ Ef; M¼ Ey; ð13Þ

and the areal dilation is

J¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detFT F

p
¼ lm: ð14Þ

Next, the unit vectors

N¼ L �M; n¼ l�m ð15Þ

are the outward normals to Tk and Tj, respectively.
The tangent unit vector l can also be expressed by the standard

cylindrical basis fiðyÞ; jðyÞ;kg such that

l¼ cos ti�sin tk; ð16Þ

when using the angle tðfÞ and the unit normal to the parallel rigid
planes k, see Fig. 2. The transformations between the spherical
and the cylindrical bases is given by

i¼ coscecþsincer ; j¼ ey; k¼�sincecþcoscer : ð17Þ

From (13)3, (16) and (17) it can be shown that

r0 ¼ lR sinðc�tÞ; c0 ¼
lR

r
cosðc�tÞ; ð18Þ

which are first order ordinary differential equations for the
functions rðfÞ and cðfÞ.

3. Equilibrium

The referential equilibrium statement of the membrane is

Div Pþ Jf ¼ 0; ð19Þ

where Div is the referential two-dimensional divergence operator
on k, P is the first Piola–Kirchhoff stress tensor and f is the
distributed force (body force and lateral traction) per unit area of j.

Assuming the existence of a strain energy function WðFÞ per
unit area of k such that P is given by the gradient of the strain
energy density with respect to F such that

P¼WF: ð20Þ

Fig. 1. Reference (left figure) and deformed (right figure) configurations of the

membrane–fluid structure. Fig. 2. The geometry of the deformed membrane and the tangent plane.
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