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We study the stability characteristics of the molecular stress function (MSF) model, i.e., a molecular
constitutive theory for stress that extends the original Doi–Edwards model for linear polymers to the case
of branched polymers, by repeating the assumption that the tension in the deformed chain is equal to
its equilibrium value. We derive analytical, closed-form conditions for Hadamard stability under general
3-D high-frequency, short-amplitude wave disturbances in bi-quadratic form, which reduce to simple
algebraic criteria for the cases of 1-D and 2-D disturbances. Application of the derived conditions in the
case of general biaxial extension, which provides a simplified description of many processes encountered
in industry and nature, shows that the MSF is Hadamard unstable for strains beyond 2. This casts doubts
on its ability in predicting correct elastic response under rapid extensional deformations. The region of
instability widens with the strengthening of network connectivity or the alignment strength of the flow.
Dissipative stability of the MSF is examined using two necessary criteria: the first and less restrictive
criterion requires the stress to be monotonically and unboundedly increasing function of strain in uniaxial
elongation and simple shear. The second criterion requires the free energy and the rate of energy dissipa-
tion to be bounded functions of deformation. We find that while MSF satisfies the first stability criterion,
violates the second, thus revealing thermodynamic inconsistencies in formulating the dissipative terms
of the constitutive equation.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The apparent success of the Doi–Edwards constitutive theory in
explaining non-linear viscoelasticity of entangled linear polymer flu-
ids 30 years ago sparked a still ongoing flurry of activity aiming
in providing molecular explanations in rheology modeling. A large
part of this activity is motivated by the realization that in polymers
the dependence of the viscoelastic (VE) memory on deformation
is not “universal” but depends on the macromolecular architec-
ture: strain-thinning is diminished with the extent of long chain
branching, especially when this is due to the formation of internal
(double-crosslinked) branches. The reason is that, following a sud-
den deformation, the presence of appropriately positioned chemical
bonds (branch end points) contributes to some remaining segmen-
tal stretching, which along with segmental orientation, accentuates
stress survival. Therefore, the type and degree of branching as well as
the branch length and location (internal vs. external, i.e., crosslinked
on both ends vs. tethered) improve the connectivity of the temporary
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(since we are dealing with liquids) polymer network, reduce entan-
glement destructibility upon deformation and, therefore, smoothout
the non-linear viscoelastic character of the fluid. Consequently,
molecular or phenomenological constitutive models owe to accom-
modate a range of network connectivity strengths; in both flexible
polymer liquids [1–14] and solids [15–18] this increases with the
ratio of permanent crosslinks over temporary entanglements.

One such constitutive equation (CE) is the molecular stress func-
tion (MSF) model, proposed by Wagner et al. [40] which is especially
developed to calculate the elongational stresses of entangled poly-
mers; it is derived by generalizing the strain energy function of the
Doi–Edwards model in a way that covers a wide spectrum of degrees
of polydispersity and branching (Br), starting from a purely linear
chain where Br = 0. Unlike Doi–Edwards, MSF takes into account
the change of the tension in the ends of the deforming molecular
chains and the decrease of the tube diameter with increasing de-
formation. In the tube concept for extensional flows, the extension
of a network strand can only be achieved by reduction of the tube
diameter. The functional form of the MSF model consists the basis
for many recently proposed CEs [8,10,11], also developed for the
description of extensional flows. These flows are particularly useful
in modelling processes such as melt spinning, blow molding, sheet
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stretching, tube inflation, vacuum molding, extrusion coating and
foaming.

The proposed CEs have been developed and established by com-
parison with experimental data for simple flows and low Deborah
(De) numbers (De ∼ the product of deformation rate times relax-
ation time), which they can describe accurately. Nevertheless, in real
polymer processes, complex and three-dimensional (3-D) flows, in
the region of high Deborah numbers, are encountered. Employment
of the constitutive theories in such cases has been hindered by the
appearance of several types of instabilities, not observed in real life,
during numerical simulation, reflecting the poor formulation of the
CEs. The purpose of this paper is to study the stability of the MSF,
which is a quite versatile constitutive scheme.

As explained by Kwon and Leonov [19], VE CEs, may be plagued by
two types of mathematical instabilities: the Hadamard and the dissi-
pative instability. The Hadamard instability means the ill-posedness
of the solution under sudden or high frequency wave disturbances
and, therefore, addresses the elastic character of a CE. The dissipa-
tive instability addresses its viscous character; for differential CEs is
caused by improper formulation of dissipative terms which, in an
integral CE, are hidden inside the “hereditary functional”. Testing a
score of CEs [19] showed that few fulfil the tough constraints for
both Hadamard and dissipative stability. Unless one neglects iner-
tial terms (and sometimes even then), unstable CEs lead to unphys-
ical prediction of flow properties and implementation problems in
trying to solve them numerically; these are especially true in high
Deborah number (De) flows.

The set of a CE concerning a VE liquid plus the continuity equa-
tion and equation of motion with which it is coupled may be defined
as Hadamard stable (or evolutionary stable, or well posed) when its
solution at any time provides the complete initial conditions for de-
termining the solution at subsequent times [23]. Thus, Hadamard
stability allows solutions to propagate in the positive direction of
the time axis. Otherwise, blow-up instability occurs very quickly,
even with extremely short wave disturbances. This results in pro-
gressive failure of numerical calculations; the finer the mesh, the
worse will be the degradation of the results [34–36]. In many cases,
one can treat the Hadamard instability as a blow-up type increase
in the amplitude of initially infinite small waves of disturbances as
the wavelength tends to zero. This type of instability can be associ-
ated with a non-linear rapid response of the CE; i.e., the CE should
possess a perfect elastic limit and, furthermore, its elastic potential
should be thermodynamically stable. Therefore, Hadamard instabil-
ity depends on such quasi-equilibrium properties as the differential
operator in the evolution equation of a differential CE model or the
elastic potential of an integral model. Moreover, Hadamard stability
is closely related with thermodynamic admissibility constrains, such
as the Baker–Ericksen inequality and the strong ellipticity condition
[47,48]. If a CE is Hadamard stable then it follows that

• the greater principal force corresponds always to the greater prin-
cipal stretch;

• the curve of principal stretch against the corresponding principal
force, when the other principal forces are kept constant, slopes
upward;

• the curve of principal force against the corresponding principal
stretch, when the other principal stretches are kept constant,
slopes upward;

• the force–stretch relations are uniquely invertible.

In some cases, regularization of ill-posedness may be achieved. The
most common remedy is the addition of a small newtonian term to
the stress. However, in complex flow simulation, this may not be
enough to suppress numerical instability, and when the newtonian
term becomes larger, the description of the CE deviates from the
experimental data of VE liquids.

Dissipative instabilities, on the other hand, result from the poor
formulation of the viscous terms of the CE, and may occur even if the
rate of energy dissipation is positive definite. Their study was initi-
ated by Leonov [20] and was based on the general Maxwell fluid. The
motivation was that the upper convected Maxwell model, although
globally Hadamard stable, displays the unbounded growth of stress
in simple extension, when the elongation rate exceeds the half of the
reciprocal relaxation time. For VE fluids describable by a differen-
tial CE, subject to any regular flow with a given history, Leonov [20]
proposed a sufficient condition (close to the necessary one) for dis-
sipative stability. The corresponding conditions for a single integral
time–strain separable with exponential type memory CE fluid were
derived in [21]. It is noticeable that, in many VE flows the knowledge
of both strain and stress history is necessary for a proper dissipative
stability analysis [20,21]. Several patterns of pathological behavior
related to dissipative instability predicted for one-dimensional (1-D)
flow by some popular variations of Maxwell-like CEs are exposed in
[22]. For stability, it is necessary that both the steady flow curves
in simple shear and simple elongation are monotonically and un-
boundedly increasing [22].

By reviewing the literature, one discovers that Hadamard stability
(the most studied of the two types) was initiated for VE fluid mod-
els by Rutkevich [23] and Godunov [24]. Significant results obtained
until the late 1980s are summarized by Joseph [25]. These studies
dealt with Hadamard stability of specific differential VE CEs, both
time–strain separable and non-separable, for specific flows, employ-
ing the method of characteristics to derive the stability criteria. They
had also focused on specifying the functional form of the evolution
operator of the Cauchy tensor for these CEs.

Kwon and Leonov [19,21,26] have studied Hadamard stability
of a variety of both differential and time–strain factorable integral
Kaye–Bernstein Kearsley Zapas (K–BKZ) VE CEs. The strain measure
of the fluid models is the Cauchy tensor, which is supposed to be
positive definite and its time evolution is described by a linear dif-
ferential operator. Their results were obtained by employing stan-
dard perturbation analysis of small amplitude and extremely short
and high frequency waves of disturbances imposed on a basic flow.
They have shown that this technique, called the method of “frozen
coefficients”, is equivalent to the more general method of character-
istics.

Kwon and coworkers [27,28] have studied both Hadamard and
dissipative stability of two CEs based on molecular arguments: the
Doi–Edwards and the differential pom-pom models. They have de-
rived criteria for Hadamard stability in the general case of 3-D dis-
turbances for both models. An attempt has also been made to derive
Hadamard stability for the original, integral version of the pom-pom
model. However, it failed to provide any such criteria. Instead of de-
riving criteria for dissipative stability, they have considered the lim-
iting case of creep shear flow and have shown that the conformation
tensor eventually becomes negative.

Rajagopal and Wineman [46] put forward a general theory to
describe the mechanics of solid materials in which microstructural
changes are induced due to deformations. Contrary to classical theo-
ries, they considered the possibility that as the material is deformed
more than a single micromechanism determine the Cauchy stress.
The creation of the second micromechanism is given by an activation
criterion similar to a yield condition in plasticity, which is fixed once
and forever and there is no evolution of a yield surface. “Inelastic”
behavior of materials can be explained within the context of such
a theory. Following a more general approach based on thermody-
namics, Dunn and Rajagopal [29] performed a stability analysis of
incompressible VE fluids of differential type. A dissipation princi-
ple and the assumption that the stored energy should reach an ex-
tremum at equilibrium constitute the cornerstones of their study.
Rajagopal and Srinivasa [30] continued by developing a thermody-
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