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Normal stresses are set up by shearing a rubber block or tube. They depend strongly on the end conditions,
even for relatively long specimens [A.N. Gent, J.B. Suh, S.G. Kelly III, Mechanics of rubber shear springs, Int.
J. Non-Linear Mech. 42 (2007) 241–249; J.B. Suh, A.N. Gent, S.G. Kelly III, Shear of rubber tube springs, Int.
J. Non-Linear Mech. 42 (2007) 1116–1126]. We have now examined a solid rubber cylinder bonded within
a rigid cylindrical tube and subjected to pressure at one end. In this case, the correct end conditions for a
simple shear deformation are met, at least approximately. Theoretical analysis and finite element calcula-
tions show that inwardly directed second-order stresses are set up at the wall, in contrast to the outwardly
directed stresses generated by shearing a block or tube. However, for the particular geometry considered,
the stresses were rather small in comparison with the applied pressure. Conditions are described under
which they would be significantly larger. Stresses in a non-linearly viscous fluid under steady shear flows
are expected to be similar, depending strongly on the geometry, end shapes and stress conditions.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Previously, finite element calculations have been carried out for a
rubber block bonded between two rigid parallel plates and sheared
in plane strain by displacing one of the plates parallel to the other,
Fig. 1 [1]. The rubber was assumed to be an incompressible elastic
solid, obeying the simple neo-Hookean non-linear constitutive rela-
tion, with a single elastic coefficient, the shear modulus �. For this
geometry, Rivlin [2] showed that second-order normal stresses t11,
t22 and t33, are required to maintain the shear deformation, in addi-
tion to the shear stress t12:

t11 = ��2 + p (1)

and

t22 = t33 = p (2)

where p is a reference pressure. If the end pressure t11 = 0, then
t22 = t33 = −��2. Thus, the normal stress t22 is a second-order com-
pressive stress.

Rivlin pointed out that other stresses must also be applied to
the end surfaces to maintain this deformation. They are a stress tn
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normal to the end surface in the deformed state, and a shear stress
ts (Fig. 1):

tn = p − ��2/(1 + �2) (3)

ts = ��/(1 + �2) (4)

However, these stresses are not usually applied. Finite element cal-
culations showed that strikingly different normal stresses are gener-
ated when they are absent [1]. The stress t22 becomes tensile instead
of compressive, and the stress t11 parallel to the shear direction be-
comes positive and large, increasing in proportion to �2. These un-
expected results showed that end conditions could not be neglected,
even for long blocks.

Similar effects were found in shearing a cylindrical rubber tube
bonded between inner and outer rigid cylindrical surfaces [3,4].
When the tube surface was displaced axially, then failure to apply
the requisite stresses on the end surfaces led to high longitudinal
stresses, as for sheared rectangular blocks, and the radial stresses
became tensile instead of compressive.

We now consider a solid rubber cylinder bonded inside a rigid
cylindrical tube and sheared by applying a pressure P to one end.
The expected stresses are derived for a neo-Hookean material and
compared with those found in one particular case by finite element
analysis.

2. Theory

The rubber cylinder, of length L and radius a, is assumed to un-
dergo a simple shear deformation with displacements only in the
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Fig. 1. Shear of a rubber block showing the stresses needed on the end surfaces to
maintain a simple shear deformation [2].

length direction, the radial and azimuthal coordinates being un-
changed. It is assumed to be incompressible in bulk and neo-Hookean
in elastic behavior, with shear modulus �. Using cylindrical coordi-
nates r, �, z, the stresses acting on a cylindrical element of the tube
having a radial thickness dr are [2]:

trz = ��

tzz = ��2 + p

trr = t�� = p

tr� = tz� = 0,

where � is the amount of shear and p is an undefined pressure. The
equations of equilibrium are:

�trr/�r + �trz/�z = 0 (5)

�trz/�r + �tzz/�z + trz/r = 0 (6)

(1/r)�t��/�� = 0 (7)

Because � is assumed to be independent of z, �trz/�z is zero, and
hence from Eq. (5), �trr/�r and �p/�r are also zero. Thus, p, trr and
t�� are independent of r. By symmetry, p is also independent of �.
Eq. (6) then becomes

���/�r + �p/�z + ��/r = 0.

If we assume that �p/�z is constant, this equation yields the small-
strain solution for the dependence of the amount of shear on the
radial distance r: �r = (r/2�)(�p/�z). The maximum amount of shear
at r = a is thus

�m = (a/2�)(�p/�z).

The end conditions are:
∫

2�rtzz dr = −�a2P, when z = 0,

and
∫

2�rtzz dr = 0, when z = L.

Hence, p(z = 0) = −P − ��2m and

p(z = L) = −��2m

We infer that

p(z) = −P[1 − (z/L)] − ��2m (8)

The predicted wall stresses are

trr = t�� = p(z)

tzz = p(z) + ��2m.

Thus, the second-order stresses are represented by the differences in
the axial and radial normal stresses at any distance z along the wall:

tzz − trr or tzz − t�� = ��2m. (9)

3. Finite element analysis

The rubber cylinder was assigned a length L of 100mm, radius a
of 10mm, and shear modulus � of 1MPa, and made incompressible
in bulk. It was represented by 420 axisymmetric four-noded or eight-
noded elements (CAX4H or CAX8H), distributed at higher density
near the ends (see Fig. 2) in view of possible stress anomalies there.
ABAQUS software was employed to determine stresses and displace-
ments when a pressure P, ranging from 0.4 to 40MPa, was applied
to the upper end surface of the cylinder. Results are presented here
only for the highest pressure, 40MPa, and for eight-noded elements,
the results for four-noded elements being indistinguishable.

The distribution of shear stress tz� at the wall is shown in Fig. 3.
Over most of the cylinder length tz� is seen to be constant although
there were marked departures near the ends, particularly at the
pressurized end. The corresponding axial tzz and radial trr normal
stresses are shown in Figs. 4 and 5. They were approximately equal in

P

Axis of 
symmetry

Fig. 2. FEA model of a pressurized cylinder.
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Fig. 3. Wall shear stress tz� vs distance z from the pressurized end. Applied pressure
P = 40MPa.
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