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Abstract

A non-linear mechanical model of non-shallow linearly elastic suspended cables is employed to investigate the non-linear modal characteristics
of the free planar motions. An asymptotic analysis of the equations of motion is carried out directly on the partial-differential equations
overcoming the drawbacks of a discretization process. The direct asymptotic treatment delivers the approximation of the individual non-
linear normal modes. General properties about the non-linearity of the in-plane modes of different type—geometric, elasto-static and elasto-
dynamic—are unfolded. The spatial corrections to the considered linear mode shape caused by the quadratic geometric forces are investigated
for modes belonging to the three mentioned classes. Moreover, the convergence of Galerkin reduced-order models is discussed and the influence

of passive modes is highlighted.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The linear and non-linear dynamics of suspended elastic ca-
bles have received considerable attention due to their use in
several applications in the fields of communications, electricity,
mooring systems, transportation, and crane-operation systems.
The linear vibration theory of suspended cables is attributed to
the work of Irvine and Caughey [1], Irvine [2], and Triantafyl-
lou and co-workers [3,4]. The modal properties of shallow
cables have been shown to depend on one elasto-geometric
parameter, the so-called Irvine’s parameter.

Free non-linear vibrations were studied in [5,6] to mention
only a few works. Several studies dealt either theoretically or
experimentally with harmonically forced oscillations both for
the non-resonant and the resonant cases, the latter including a
plethora of modal interactions. In particular, it has been demon-
strated that the responses of shallow suspended cables near the
first crossover exhibit complex behavior due to the presence
of multiple internal resonances involving in-plane and out-of-
plane modes. Examples include the coexistence of different
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types of periodic motions and the occurrence of quasiperiodic
and chaotic oscillations [7-10].

The great majority of the works, especially those addressing
non-linear vibrations, deals with shallow cables described by
approximate mechanical models based on the static condensa-
tion of the longitudinal dynamics. In particular, a characteriza-
tion of the non-linear normal modes of shallow cables has been
addressed in [11,12]. An extensive and updated review of the
state of the art on shallow cables can be found in [10].

On the contrary, a few studies have addressed linear and
non-linear dynamic behaviors of non-shallow cables whereas
non-shallow configurations may occur in a number of engi-
neering applications such as in cables used for cable railways,
transmission lines, mooring lines or tag-lines. Hence, there is
a practical and theoretical interest in investigating non-shallow
cable configurations and the leading dynamics around them.

In [13,14], a non-linear mechanical model of non-shallow
cables, describing the fully coupled longitudinal and trans-
verse dynamics, was presented. Therein, results of the inves-
tigations into the spectral properties of linear free vibrations
around the catenary configurations were reported. Differently
from shallow cables, whose linear dynamics depend solely
on Irvine’s parameter, it is shown that the linear vibration
properties of non-shallow cables depend on two parameters
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separately regulating the cable elastic and geometric stiffnesses.
Among other properties, it was also determined where, in
parameter space, the three classes of modes appear, namely,
geometric, elasto-static and elasto-dynamic modes which were
already partly mentioned in [3]. It was demonstrated that the
elastic modes belong to a complete sequence of symmet-
ric and skew-symmetric stretching modes starting from the
lowest elasto-static stretching mode with nearly constant elon-
gation. These modes are manifested in the neighborhood of
the various crossovers, the well-known (elasto-static) lowest
crossovers and the highlighted higher-order (elasto-dynamic)
crossovers. Away from these crossovers, the modes are
geometric modes, in the sense that they are prevalently gov-
erned by the geometric stiffness, and exhibit leading transverse
displacements.

In this paper, the primary focus is on the effects of the ge-
ometric non-linearity on the modal properties; in particular,
the objective is to characterize the non-linear properties of the
individual in-plane modes with a clear effort towards unfold-
ing general properties. Further, the a priori knowledge of the
non-linear modal properties is the basis for the prediction of
the features of unimodal forced responses and interaction phe-
nomena (the type of bifurcations, the possible routes to chaotic
solutions,. . .).

The non-linear partial-differential equations of motion and
boundary conditions are recast in first-order form. Then, the
asymptotic analysis of individual non-linear normal modes is
presented. The main results on the non-linear characteristics of
the modal motions are summarized. They mostly relate to the
so-called effective non-linearity coefficient of the considered
mode which regulates the bending of the backbone and to the
shape functions dictating the spatial corrections to the consid-
ered linear mode shape at second order. General conclusions
are drawn about the non-linear laws of the modes, depending
on whether they are geometric, elasto-static or elasto-dynamic.

2. Equations of motion

We denote (O, 1,j, k) the orthonormal basis of a fixed in-
ertial reference frame with origin in O (Fig. 1), let N(’)" and
N* describe the static axial force due to gravity in the initial
configuration % and the incremental dynamic force arising in
the change from the initial to the current configuration €. Im-
posing the balance of linear and angular momentum yields the
equation of free undamped motions as
0[N (a — ao)] N O(N*a) — 62_u*

ox* e O 0

where x* indicates the horizontal coordinate along the fixed
i direction. In Eq. (1), mq is the mass per unit cable length
in its initial configuration % lying in the (i, j)-plane—here
expressed as pgy(x*) = x*i + y*(x*)j; u* is the displacement
vector, henceforth conveniently decomposed as u*(x*, t*) =
i* + w*k with 4" being the in-plane displacement (i.e., lying
in the (i,7)-plane); ag(x*) is the unit tangential vector in %
and 0p(x*) is the angle between ag and i given by 0p(x*) =
arctan(dy*/dx*); a is the unit vector tangent to the current

ey

Fig. 1. The geometry of the cable model with the inertial reference frame:
%o and % indicate the initial static and the current dynamic configurations,
respectively.

configuration of the cable axis. Henceforth, the same notation
will be employed throughout the manuscript, namely, lower-
case bold italic letters indicate vectors in E3, hatted lowercase
bold italic letters denote vectors lying in the (i, j)-plane, and
lowercase bold italic letters denote the corresponding algebraic
vectors.

The cable axial stretching associated with the deformation
from %y to € is

*

ds*

*

dx*

V= = cos 0y

= cos 90\/(1 +u)? + (tan Op + )2 + w'?, (2)

where |.| represents the magnitude of the vectorial argument,
s* is the arclength along the cable axis in %o and the prime
indicates differentiation with respect to the non-dimensional
coordinate x = x*/£. Further, the displacement components are
non-dimensionalized as u := u*™/¢, v := v*/L, w = w*/L.
The unit vector in the current tangential direction is expressed
as

’

o (LF Wi+ (tan O + v )j + w'k
0 .
v

= ——=C

/

3)

Due to the relatively high axial stiffness of typical engineer-
ing cables, the initial configuration of the cable, represented by
the catenary, and the axial load are, respectively,

) = eosh o
= —|cosh = —coshy | = — ,
y(x ; 5 A

No(x) = coshy <% - x) , 4

where y := y*/{, y := mgt/H{ is solution of the geometric
compatibility condition sinh(y/2) = (y/2)y, with 1y := Lo /<,
Ly is the initial total length of the cable, No(x) := N (x*)/Hy,
and H( is the horizontal projection of Nj. The extensibility of
the cable under its own weight is neglected as it is typically done
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