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A B S T R A C T

After several ad hoc proposals of new 2-dimensional carbon structures, interest in their

actual synthesis has begun to increase. One needs a clear orientation or criteria to describe

those carbon structures in an appropriate way. In the present paper, we propose a system-

atic method for discovering new stable structures of carbon crystals with sp2-bonding using

advanced mathematical methods. There are two key ideas: geometric descriptions based

on curvatures, symmetries, etc. and the standard realization of crystal lattices via harmonic

theory to identify stable coordinates. We apply this new method to study negatively curved

carbon crystals with octahedral symmetry after Mackay–Terrones [1], and identify several

new structures. The stability and electronic states of the proposed structures are investi-

gated using first principles calculations.

� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Many types of 2-dimensional carbon structures have been

proposed and even synthesized in the past several decades

via ad hoc methodologies. Representative examples of such

structures include Buckminster fullerene C60, single-wall car-

bon nano tubes (SWNTs), and graphite-like sheets. From a

mathematical viewpoint, these structures can be classified

into three categories according to the Gauss curvature of their

surfaces. The surfaces of structures in the first category have

positive curvature, those in the second category have zero

curvature, and those in the third have negative curvature.

The first category includes fullerenes, whereas the second

includes SWNTs and graphite-like sheets. A natural question

follows: do negatively curved carbon structures exist?

In 1991, Mackay and Terrones [1] proposed a carbon crystal

structure, now called the Mackay–Terrones Schwarzite crys-

tal, or simply the Mackay crystal. Its atomic structure is a tri-

ply-periodic trivalent (sp2-bonding) network, which consists

of 6- and 8-membered rings. Moreover, all carbon atoms in

the structure lie on the Schwarz minimal P-surface, which

has a negative Gauss curvature. Lenosky et al. [2] also found
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a negatively curved carbon crystal with 6- and 7-membered

rings. These are examples of the third category of 2-dimen-

sional carbon structures described above, because their sur-

faces have a negative curvature.

Because surfaces with negative curvatures are mathemat-

ically more stable under local deformation, it is promising for

synthesis and thus of interest to study them in a systematic

way and give them appropriate geometrical descriptions.

In the present paper, we propose a mathematical method

for identifying stable carbon crystal structures, which are tri-

ply periodic, trivalent, negatively curved networks with octa-

hedral symmetry after Mackay. Herein, we call them Mackay–

Terrones-like Schwarzites, or Mackay-like crystals in short. The

octahedral symmetry of the structure plays an important role.

Since we require the structures to be triply periodic in order to

span 3-dimensional space, the lattice of periodicity is cubic

([3, Theorem 3]) and the primitive cell (the fundamental

domain of the periodicity) shapes the truncated octahedron.

In the future, Mackay-like crystals may be used as junctions

in more complicated 3-dimensional jungle-gym-like struc-

tures. Deza and Dutour [4] classified fullerene-like structures

that are positively curved finite carbon structures with icosa-

hedral symmetry.

Our method consists of three steps. First, we classify pos-

sible topological networks for Mackay-like crystals under cer-

tain reasonable assumptions using combinatorial arguments.

Second, we determine their atomic coordinates in actual

space. Here, we use the notion of the standard realization.

The mathematical definition of a crystal lattice and its stan-

dard realization were introduced by Kotani and Sunada [5]

to study stable atomic configurations of crystal structures in

the sense of all atoms are in mechanically balancing posi-

tions. The standard realization turns out to be very useful in

the systematic search for stable configurations of a given

topological structure. In fact, Sunada [6] proposed a new

sp2-bonding crystal structure (K4 crystal) as a diamond twin

using the standard realization. The stability and material

properties of the K4 carbon crystal were investigated by Itoh

et al. [7] and others [8,9].

Naito [10] established an algorithm to determine the coor-

dinates of atoms in the standard realization of a crystal lat-

tice. However, it is generally rather complicated to obtain

actual coordinates for the standard realizations by applying

the algorithm. Here, we are able to determine the coordinates

with a geometric consideration by using the octahedral sym-

metries effectively.

Finally, we identify stable structures and determine the

corresponding electronic structures using first principles

calculations.

2. Results and discussion

2.1. Classification of networks

We look at the network in a primitive cell and extend it to the

whole space as a triply periodic structure. The vertices and

edges of the network represent positions at which carbon

atoms and the covalent bonds between them can be placed,

respectively. As explained in Fig. 1, we can find networks of

Mackay-like crystals by determining networks in the hexago-

nal domains shown in Fig. 1b. Since the hexagonal domains

have dihedral group D3 symmetry, we should determine net-

works in the kite-like region (Fig. 1c). By reversing the above

process, it is clear that the network of any Mackay-like crys-

tals must have octahedral symmetry.

Now we look for a carbon 3-dimensional crystal by sp2-

bonding only. By topologically deforming the kite-like region

onto a disk, we assume the following natural conditions on

the networks in the disk: (1) Any inner vertex is of degree 3.

(2) Any vertex on the boundary is joined with the two neigh-

boring vertices on the boundary, or with an inner vertex and

not with both neighboring vertices on the boundary. (3) A net-

work is planar and connected, and there are at least four ver-

tices on the boundary. (4) A network does not have a

consecutive sequence of odd vertices on the boundary. (5) A

network is triangle-free.

Mathematically, it is easy to see that there is no network

with an odd number of vertices satisfying the above condi-

tions (for additional mathematical details, see [3, Theorem

1]). Moreover, networks satisfying the above conditions have

at least 6 vertices. Fig. 2 shows all of the possible 6- and 8-ver-

tex networks satisfying the above conditions. For Mackay-like

crystals with octahedral symmetry, the Euler polyhedron the-

orem implies that the primitive cell should contain at least

one k-membered ring with k P 7. If a network consists of 6-

and 8-membered rings only, the number of 8-membered rings

should be 12, whereas a network consisting of 6- and 7-mem-

bered rings should have 24, 7-membered rings. Using these

networks, as we stated above, we can obtain networks in

the primitive cell, as shown in Fig. 1a.

Now we move to the second step, identifying the spatial

coordinates of the topological structures we classified above.

Stable configuration of atoms in a crystal lattice should be

the standard realization of the crystal lattice. The standard

realization is the equilibrium configuration of all perturba-

tions with respect to atoms and lattices, and satisfies the dis-

crete Poisson equations of the network with periodic

boundary conditions. It is a complex process to obtain the

coordinates of the standard realization of a given crystal lat-

tice. Here, we succeeded by making use of geometric observa-

tions in an essential way, as explained in the supplementary

mathematical discussion [3].

2.2. Geometrical stability

We investigated the stability of the structures classified above

by calculating the phonon spectrum. We used the numbering

scheme shown in Fig. 2. Our new proposed structures are 6-

1-1-p, 6-1-2-p, 6-1-3-p, and 8-4-2-p crystals (see Fig. 3).

Phonon spectra calculations indicate that these four struc-

tures are mechanically stable (see Fig. 4).

The structure predicted by Mackay–Terrones [1] was

among the structures we classified, and was designated 8-

2-1-p. Although the Mackay crystal was proposed in 1991,

the present paper is the first presentation of its phonon spec-

trum that we are aware of. Lenosky et al. [2] found a carbon

network consisting of only hexagons and heptagons on the

Schwarz minimal P-surface, which we classified as 8-4-1-

p. Both the Mackay crystal and the Lenosky crystal are shown

to be stable below.
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