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a b s t r a c t

The paper aims to investigate plastic limit pressure of spherical vessels of nonlinear combined isotropic/
kinematic hardening materials. The Armstrong-Frederick kinematic hardening model is adopted and the
Voce hardening law is incorporated for isotropic hardening behavior. Analytically, we extend sequential
limit analysis to deal with combined isotropic/kinematic hardening materials. Further, exact solutions of
plastic limit pressure were developed analytically by conducting both static and kinematic limit analysis.
The onset of instability was also derived and solved iteratively by Newton’s method. Numerically, elastic
eplastic analysis is also performed by the commercial finite-element code ABAQUS incorporated with
the user subroutine UMAT implemented with user materials of combined hardening. Finally, the problem
formulation and the solution derivations presented here are validated by a very good agreement between
the numerical results of exact solutions and the results of elasticeplastic finite-element analysis by
ABAQUS.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Spherical pressure vessels are popular in engineering applica-
tions. Their structure design and safety assessment are issues of
paramount importance. Limit analysis is efficient for structural
design and safety assessment based on the static or the kinematic
theorem [1]. In particular, it is possible to deal with limit analysis
problems involving isotropic hardening effects and large defor-
mation by sequential limit analysis [2]. By sequential limit analysis,
we conduct a sequence of limit analysis problems by updating the
yield function and the deformed configuration sequentially [2e18].
Further, a generalized Hölder inequality [19] has been utilized to
establish the kinematic formulation of sequential limit analysis
from the corresponding static formulation [2,5e18].

In literature, some attention has been paid to elasticeplastic
spherical vessels made of isotropic hardening [e.g. Refs. [20e22]].
Actually, it is noted that real-life materials generally demonstrate a
combined isotropic/kinematic hardening behavior [23]. Recently,
Chaaba [24] originally investigated the upper-bound limit pressure
of thick vessels of combined isotropic/kinematic hardening by

sequential limit analysis based on the bipotential concept.
Accordingly, we attempt to extend the approach of sequential limit
analysis to consider spherical vessels made of combined isotropic/
kinematic hardening materials by a generalized Hölder inequality
[19]. Based on the previous work on isotropic hardening pressur-
ized vessels [12,17], it is to utilize a generalized Hölder inequality
[19] to establish the kinematic formulation from the corresponding
static formulation of a sequential limit analysis problem. In the
paper, the Armstrong-Frederick kinematic hardeningmodel [25,26]
is adopted and the Voce hardening law [27] is incorporated for
isotropic hardening behavior. Both static and kinematic limit
analysis are to be analytically conducted sequentially to approach
the real limit solutions. Accordingly, exact solution is acquired by
confirming the equality relation between the greatest lower bound
and the least upper bound [e.g. Refs. [17,18]]. On the other hand, the
onset of instability is also investigated to capture the occurrence of
weakening phenomenon resulting from pressurized deformation
[17]. In addition, elasticeplastic analysis is performed by the
commercial finite-element code ABAQUS [28] incorporated with
the user subroutine (UMAT) for comparisons and validations. Note
that, we implement the material constitutive model of combined
the Voce isotropic hardening [27] and the Armstrong-Frederick
kinematic hardening [25,26] in the user subroutine UMAT for the
commercial finite-element code ABAQUS [28].
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2. Analytical background

We consider thick-walled spherical vessels made of materials
with nonlinear isotropic and kinematic hardening subjected to
internal pressure in spherically symmetric conditions. It is assumed
that the behavior of nonlinear isotropic and kinematic hardening is
described by the Voce hardening law [27] and the Armstronge
Frederick kinematic hardening model [25,26], respectively. Corre-
sponding to the nonlinear combined isotropic/kinematic hardening
for a von Mises material, the yield function is denoted as [29].
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where S is the deviatoric stress tensor, Xdev is the deviatoric part of
the backstress tensor X acting to translate the center of the yield
surface, sY is the yield strength. It is noted that the backstress X
denotes the movement of the yield surface center while the yield
strength sY accounts for the size of the yield surface. Accordingly,
the convexity of the yield surface preserves for a vonMisesmaterial
with nonlinear combined isotropic/kinematic hardening.

By the ArmstrongeFrederick kinematic hardening model
[25,26], the backstress rate _X is described as

_X ¼ 2
3
C _ε� gX _ε (2)

where C and g are material parameters, _ε is the plastic strain rate, _ε
denotes the equivalent plastic strain rate.

By the Voce hardening law [27], the behavior of nonlinear
isotropic hardening is modeled as

sY ¼ sN � ðsN � s0Þexpð�hεÞ (3)

where s0 is the initial yield strength, sN is the saturation value of s0,
h is the hardening exponent and ε is the equivalent plastic strain.

Moreover, we have the equivalent stress s and the equivalent
plastic strain rate _ε associated with the von Mises yield criterion
expressed as follows
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where sr, sq and sf are the stress components in the radial, polar
and azimuthal directions, respectively. Xr, Xq andXf are the back-
stress components in the radial, polar and azimuthal directions,
respectively. _εr , _εq and _εf are the plastic strain rates components in
the radial, polar and azimuthal directions, respectively.

Considering spherical symmetry and the incompressibility, the
expressions of the equivalent stress s and the equivalent plastic
strain rate _ε can be simplified into the following forms

s ¼ ½ � ðsr � XrÞ þ ðsq � XqÞ� (6)

_ε ¼ � _εr ¼ 2 _εq (7)

Due to the spherical symmetry, we have the plastic strain ratee
velocity relations as

_εr ¼ dur
dr

(8)

_εq ¼ _εf ¼ ur
r

(9)

where ur is the velocity component in the radial direction.
Considering the incompressibility, we obtain the radial velocity

as

ur ¼ a2 _a
r2

(10)

where a, _a are the current interior radius and its velocity,
respectively.

Thus, the equivalent plastic strain rate _ε can be expressed in the
form as

_ε ¼ 2
a2 _a
r3

(11)

The equivalent plastic strain is then obtained as

ε ¼
Z

_εdt ¼ ln
r2

r20
(12)

where r0 is the initial radius of the location concerned.
Combining Eqs. (2) and (11), the components of the backstress

rate _X can be described as follows

_Xr ¼ 2
3
C _εr � gXr _ε (13)

_Xq ¼ 2
3
C _εq � gXq

_ε (14)

Due to the proportional loading and the initial condition
X(0) ¼ 0, the integral form of the ArmstrongeFrederick kinematic
hardening model [25,26] can be obtained as follows
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Combining Eqs. (3) and (12), we express the Voce hardening law
[27] in the form as

sY ¼ sN � ðsN � s0Þ
�r0
r

�2h
(17)

Accordingly, we have acquired the values of the backstress X and
the yield strength sY expressed as functions of the configuration.
Namely, we can update the yield function with these step-wise
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