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a b s t r a c t

Extensive finite elements analyses have been conducted to obtain solutions of the A-term, which is the
second parameter in a three-term elasticeplastic asymptotic expansion, for test specimens under biaxial
loading. Three mode I plane-strain test specimens, i.e. single edge cracked plate (SECP), center cracked
plate (CCP) and double edge cracked plate (DECP) were studied. The crack geometries analyzed include
shallow to deep cracks, and the biaxial loading ratios analyzed are 0.5 and 1.0. Solutions of A-term were
obtained for materials following the RambergeOsgood power law with hardening exponent of n ¼ 3, 4, 5,
7 and 10. Remote tension loading was applied which covers from small-scale to large-scale yielding.
Based on the finite element results, effects of biaxial loading on crack tip constraint were discussed.
Empirical equations to predict the A-term under small-scale yielding to fully-plastic condition were
developed using estimation methods developed earlier. Based on the relationships between A and other
commonly-used second fracture parameter Q and A2, the present solutions can be used to calculate
parameters Q and A2 as well. The results presented in the paper are suitable to determine the second
elasticeplastic fracture parameters for test specimens for a wide range of crack geometries, material
strain hardening behaviors under biaxial loading conditions.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In classical elasticeplastic fracture mechanics (EPFM), one-
parameter approach, which describes the HRR fields [1,2] based
on J-integral [3], usually canworkwell for high constraint cases. For
low constraint cases, under high loading conditions, the dominance
of J-integral will be lost, and the one-parameter approach of J-in-
tegral will not be appropriate any more.

Two-parameter approaches have been developed to overcome
the limitation of the EPFM one-parameter approach, in which a
second fracture mechanics parameter is introduced to characterize
the constraint effect besides the load-related parameter J-integral.
Several commonly-used two-parameter approaches are, JeT [4e6],
JeQ [7,8] and JeA2 (or JeA) [9e12] approaches, where constraint
parameter A is a different normalizing form of A2 [11,12].

Determination of both J-integral and second fracture mechanics
parameter, T, Q or A2 (A), is the precondition of application of JeT, Je
Q and JeA2 (A) approaches. In the early development of EPFM,
J-integral solutions have been well established. The solutions of

constraint parameter T-stress have also beenwell established in the
literature. Currently, numerical method, such as the finite element
analysis (FEA) method, is the mainmethod for the determination of
constraint parameters Q and A2 (A). For example, Nikishkov et al.
[12] suggested an algorithmwhich determines solutions of A using
least squares procedure based on the finite element analysis results.
Although with high accuracy, numerical method is a time-
consuming way to obtain solutions of parameters. Consequently,
understanding of constraint effect near crack-tip is limited because
of the scarcity of solutions of constraint parameter A2 (A) and Q.
Only one estimation method for parameter Q determination, which
was suggested by O’Dowd [13], can be found in the literature. No
approximation method for predicting A2 or A is available until
recently. For the convenience of engineering and theoretical ap-
plications, systematic development of estimation methods for A2
(A) and Q is required.

In recent works of authors [14,15], three estimation methods for
determining constraint parameter A conveniently have been
developed, namely, curve shape similarity method, T-stress-based
method and fully plastic analysis (superposition) method. In Ref.
[14], the relationships between A and other two commonly-used
constraint parameters A2 and Q were presented, by which solu-
tions of A2 and Q can be determined directly from obtained A

* Corresponding author. Tel.: þ1 613 520 2600x8308; fax: þ1 613 520 5715.
E-mail address: xwang@mae.carleton.ca (X. Wang).

Contents lists available at ScienceDirect

International Journal of Pressure Vessels and Piping

journal homepage: www.elsevier .com/locate/ i jpvp

0308-0161/$ e see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijpvp.2013.09.001

International Journal of Pressure Vessels and Piping 111-112 (2013) 279e294

Delta:1_-
Delta:1_given name
mailto:xwang@mae.carleton.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpvp.2013.09.001&domain=pdf
www.sciencedirect.com/science/journal/03080161
http://www.elsevier.com/locate/ijpvp
http://dx.doi.org/10.1016/j.ijpvp.2013.09.001
http://dx.doi.org/10.1016/j.ijpvp.2013.09.001
http://dx.doi.org/10.1016/j.ijpvp.2013.09.001


solutions. We have successfully applied the three estimation
methods of A to 2D plane strain cracked specimens under uniaxial
loading conditions, see Refs. [14,15]. Biaxial loading is experienced
bymany engineering components, such as those in pressure vessels
and piping structures. They are thus of equal theoretical and en-
gineering practical significance as the uniaxial loading cases. In the
present work, the three estimation methods developed in Refs.
[14,15] will be applied to develop A solutions for biaxial loading
cases for three mode I crack plane-strain specimens, single edge
cracked plate (SECP), center cracked plate (CCP) and double edge
cracked plate (DECP).

The rest of the paper is organized as follows. In section 2, theo-
retical background for JeA approach, and the estimationmethods for
parameter A will be summarized. Extensive finite element analyses
will be presented in section 3 for SECP, CCP and DECP cracked
specimens under biaxial loading conditions with biaxial ratios
l¼ 0.5,1.0, to determine numerical solutions of constraint parameter
A, through the least squares fitting method suggested by Nikishkov
et al. [12]. Using the obtained numerical solutions of A, constraint
effect near crack-tip of specimens will be discussed. It will be
demonstrated that biaxial loading has a significant effect on the
constraint parameters. In section 4, based on the obtained numerical
solutions of A, the three estimation methods for Awill be applied to
the SECP, CCP and DECP specimens under biaxial loading conditions.
Approximation formulas for estimation of A corresponding to each of
the three methods will be developed, and values of coefficients in
those approximation formulas will be determined and tabulated.
Conclusions will be drawn in Section 5. The results in this work will
show that, generally, all three estimation methods for constraint
parameter A can be applied effectively to biaxial loading conditions
of cracked specimens.

2. Theoretical background

2.1. JeA approach and numerical determining of constraint
parameter

As mentioned in the introduction section, JeA two-parameter
approach of elasticeplastic fracture mechanics, which is sug-
gested by Nikishkov et al. [11,12], is an alternate format of JeA2
approach developed by Yang et al. [9,10]. In these two formats of
the approaches, the constraint parameter A or A2 represents the
magnitude of the second term in a three-term series expansion of
crack-tip stress fields. In this paper, the JeA format is used.

Considering a two-dimensional elasticeplastic specimen con-
taining a mode I crack under plane strain condition, if the elastice
plastic behavior of the specimenmaterial described by deformation
theory follows the RambergeOsgood relationship, the uniaxial
stressestrain curve can be described as:

ε

ε0
¼ s

s0
þ a

�
s

s0

�n

(1)

where a is a material coefficient, n is the hardening exponent
(n > 1), ε0 ¼ s0=E, E is Young’s modulus, s is the stress applied on
remote end of specimen, and s0 is the material yield stress.

In the JeA two-parameter approach suggested by Nikishkov
et al. [11,12], for the hardening exponent n � 3 and under plane-
strain conditions, the three-term asymptotic solution expression
for stress field near the crack-tip in an elasticeplastic material is
given as:

sij
s0

¼ A0r
ssð0Þij ðqÞ � Artsð1Þij ðqÞ þ A2

A0
r2t�ssð2Þij ðqÞ (2)

In Eq. (2), sij(r, q) are stress components, sr, sq and srq in a polar
coordinate system with origin at the crack tip sð0Þij ðqÞ, sð1Þij ðqÞ and
sð2Þij ðqÞ are normalized angular stress functions. The dimensionless
radius r is defined as r ¼ r=ðJ=s0Þ, where J is the J-integral at
the crack tip. Power t is an eigenvalue depending on the hardening
exponent n of RambergeOsgood relation, and power s¼�1/(nþ 1).
The polynomial coefficient A0 is defined as [11],
A0 ¼ ðaε0InÞ�1=ðnþ1Þ, where In is a scaling integral only depending
on n, see Refs. [1,2]. Nikishkov [11] has proposed a computational
algorithm to determine the values of normalized angular functions
sð0Þij ðqÞ, sð1Þij ðqÞ and sð2Þij ðqÞ, asymptotic power t, and scaling integral
In. The three-term expansion in Eq. (2) for the crack tip stress
(displacement) fields is controlled by two parameters, the magni-
tude of the first term (J-integral) and a second parameter (A) con-
trolling the second and third term. Functions sð0Þij ðqÞ, sð1Þij ðqÞ and
sð2Þij ðqÞ, asymptotic power t, and scaling integral In for different n
values can be found from Refs. [11] and [16]. It is worth noting, as
shown in Refs. [14] and [15], that the present A parameter [12] and
the original A2 parameter by Chao and co-workers [9] and [10], are
related by:

A ¼ �ðaε0InÞs
�

J
s0L

�t�s

A2 (3)

where L is a characteristic length parameter. It has been well
established in Refs. [9] and [10] that A2 will be independent of load
under fully plastic loading conditions. However, parameter A will
vary with load through J, as shown in Eq. (3).

The application of JeA (A2) two-parameter approach depends on
the determination of the load-related parameter J and constraint
parameter A (A2). The solutions of J-integral (including analytical,
numerical and approximate solutions) have been well established
in the literature, such as the numerical solution of J suggested by
Moran and Shih [17], which has been adopted in the commercial
code ABAQUS [18] utilized in the present research.

Based on some stress component with the corresponding finite
element solutions at one or several locations (points) within the
plastic zone, Yang et al. [9,10] determine the A2 values by matching
the three-term expansion on crack tip stress field. It is called the
“point match” method by some researchers. Also based on FEA re-
sults, Nikishkov et al. [12] suggested a “fitting method” to determine
parameter A values by Eq. (2), which is capable of obtaining nu-
merical value of A more accurately. In the present work, the fitting
method proposed in Ref. [12] is utilized to obtained numerical so-
lutions of constraint parameter A, which are used as the accurate
solutions of A in this investigation. See Refs. [12] and [14] for more
details about the procedure of the fitting method.

Determining the constraint parameter A (A2) numerically is a
time-consuming work, therefore the authors [14,15] have devel-
oped three estimation methods to obtain the values of parameter A
conveniently. The three approximation methods will be reviewed
in the next section.

2.2. Estimation methods of constraint parameter A

2.2.1. Estimating A solutions by curve shape similarity
In Ref. [14], an estimation method (curve shape similarity

method) has been proposed to approximate parameter A solutions
for any hardening exponent n based on A solutions for a specific n
value. The method was developed based on a phenomenon
observed by Nikishkov et al. [12]. Based on FEA results for cracked
specimens under uniaxial loading, they found that, the curves of
parameter A vs. external loading ratios s/sL for different values of
hardening exponent n have the similar shape and the curves only
differ from each other by a constant which can be obtained from the
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