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a b s t r a c t

This paper presents an analytical method for solving the axisymmetric stress problem for a long hollow
cylinder subjected to locally-distributed residual (incompatible) strains. This method is based on direct
integration of the equilibrium and compatibility equations, which thereby have been reduced to the set
of two governing equations for two key functions with corresponding boundary and integral conditions.
The governing equations were solved by making use of the Fourier integral transformation. Application
of the method is illustrated with an analysis of the welding residual stresses in a butt-welded thick-
walled pipe.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Welding residual strains substantially affect the lifetime of wel-
ded structural members [1]. The locally-distributed fields of tech-
nological residual strains occur in welded joints due to non-uniform
heating and cooling during the welding and aftercooling processes
as a result of phase change in the zones of thermal influence ([2], [3]:
pp 75e87). Under certain conditions, the residual stresses cause
brittle failure of long-term-functioning welded structures. Since an
analysis of the residual stress-state induced by the welding residual
strains is very important for a proper inspection of welded joints, it
presents a vital issue for specialists in both academia and industry.

There are different approaches for analysis of the residual
stresses [3,4] in butt-welded joints, which mostly combine both
experimental [5e8] and theoretical [9,10] techniques. A vast
majority of the existing experiment-calculated methods employ
numerical [11e18] or approximate [19,20] procedures. However, for
efficient analysis of the residual stresses, as well as for solving
inverse elasto-plastic problems (which necessarily occur when one
applies certain experiment-calculated methods), exact analytical
solutions are required.

One of the most efficient theoretical approaches to determina-
tion of the residual stresses is based on the method of conventional
plastic strains [19,21]. According to this method, the material of
a welded solid is assumed to be elastic at some distance from the

axes of welded joints. But within the zones of thermal influence
due to welding, the material is assumed to be elastic-plastic.
Consequently, the components of the strain-tensor can be pre-
sented in the form

ei ¼ ~ei þ ei; eij ¼ ~eij þ gij; ij ¼ ji; isj; (1)

where the indexes i and j show the coordinate directions in the
chosen coordinate system; ei and eij are the normal and shear
strains-tensor components, respectively; ~ei and ~eij denote the
elastic strains; ei and gij stand for the residual strains. The residual
strains are locally-distributed in the neighborhood of awelded joint
and vanish at a distance from it. In more general form, the repre-
sentation of total strains has been given in [9,22]. The method of
conventional plastic strains has been sufficiently employed for
analysis of the residual stresses in welded structure members of
various shape [23e25].

Among structural elements of different shape, cylindrical bodies
are widely used in engineering practice as elements of pipelines,
pylons, crosstops, pressure vessels, etc. In most cases, the residual
stresses in butt-welded hollow cylinders can be analyzed with
application of an axisymmetric model. By making use of the
aforementioned method of conventional plastic strains, the
problem for determination of the residual stresses in a butt-welded
cylindrical pipe can be reduced to the axisymmetric elasto-plastic
problem and then solved by means of the methods of elasticity.

There exist a great number of methods for determination of the
stresses and displacements in a long hollow cylinder subjected to
various types of external loading. A great many of the dominant
methods are based on application of harmonic or biharmonic stress
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functions or displacement potentials ([26]: pp. 246e256, [27]: pp.
376e416, [28]: p. 123, [29]: pp. 343e397, [30]: pp.54e62). One of
the earliest approaches has been based on application of two
coupled harmonic displacement potentials, also known as Helm-
holtz functions [31]. Love [32] represented a general solution to the
axisymmetric problem in terms of one biharmonic function.
Different dominant methods are based on solutions in the form
suggested by Weber [33], Timpe [34], Papkovich-Neuber [35,36],
andMichell [37]. The solution of the non-axisymmetric problems is
more complicated. Complete three-dimensional solution for a long
elastic cylinder has been given by Dougal [38]. Having employed
one of the aforementioned methods, the stresses or displacements
can be represented in terms of potential functions. Hence, the
solution of the axisymmetric problem is reduced to the boundary
value problem for the corresponding harmonic or biharmonic
functions. However, a proper construction of such functions pres-
ents a real challenge to engineering mathematics.

An alternative method to treat the axisymmetric elasticity and
thermoelasticity problem for a long cylinder subjected to external
force loading on its lateral surface or distributed temperature field
was recently given in [39,40]. This method substantially uses the
relations between the stress-tensor components obtained by direct
integration of the equilibrium equations. By making use of such
relations, the compatibility equations are reduced to the governing
equations for one or two stress-tensor components, which were
chosen to be the key functions. In a similar manner, the set of
boundary conditions for different stress-tensor components is
reduced to the boundary and integral conditions for the key func-
tions. The obtained problems for the key functions are solved by
means of the integral transformation method. After the key func-
tions are found, the searched-for stress-tensor components can be
found from the aforementioned relations between different stresses.
This solution strategy allows one to construct an exact analytical
solution without unjustified increasing degree of the governing
differential equations. This direct integration method has also been
employed for analysis of the welding residual stresses in an infinite
layer [41e43] and butt-welded rectangular plates [44].

In this paper, we extend the direct integration method for
analysis of the stresses in a long hollow cylinder exposed to the
field of axisymmetric residual strains. Numerical computation is
demonstrated with an example of welding residual stresses in
a thick-walled butt-welded pipe.

2. Formulation of the problem

Consider a long hollow cylinder of inner and outer radii Ri and
Ro, respectively. In the dimensionless cylindrical-polar coordinate
system (r,4,z), the cylinder occupies a domain k � r � 1,
0�4 � 2p, �N < z < N, where r ¼ R/Ro, k ¼ Ri/Ro, and z ¼ Z/Ro, R
and Z are the dimensional radial and axial coordinates, respectively.
In the absence of body forces and external force loadings, the
cylinder is stressed by the field of locally distributed and axisym-
metric residual strains. The stressestrain problem for the cylinder
is governed ([30], p.54) by the equilibrium equations
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in terms of stresses and the compatibility (continuity) equations
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in terms of strains. Here sr, s4, sz, and srz denote the stress-tensor
components. According to Eq. (1), the constitutive equations take
the form:

Eer ¼ sr � n
�
s4 þ sz

�þ Eer ;
Ee4 ¼ s4 � vðsr þ szÞ þ Ee4;
Eez ¼ sz � v

�
sr þ s4

�þ Eez;
Gerz ¼ srz þ Ggrz;

(6)

where E stands for Young’s modulus, G ¼ E/(2 þ 2n) is the shear
modulus, and n denotes Poisson’s ratio.

Due to the absence of external force loadings, the radial and
shear stresses should meet the homogeneous boundary conditions

sr ¼ 0; r ¼ fk;1g; (7)

srz ¼ 0; r ¼ fk;1g (8)

on the inner and outer lateral surfaces of the cylinder. We also
assume that the residual strains and, consequently, the corre-
sponding stresses vanish, when jzj / N.

In the formulated problem, the object is to determine analytical
expressions for the stress-tensor components from Eqs. (2)e(6) due
to the given residual strains et (t ¼ {r,4,z}) and grz under the
homogeneous boundary conditions (7) and (8).

3. Construction of the solution

To find the stress-tensor components, we represent the
compatibility equations (4) and (5) in terms of stresses and then
reduce them to the governing equations for the key stresses. By
making use of Eqs. (6) and (2), we can represent Eq. (4) in the form
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Putting the corresponding equations of (6) into Eq. (5) yields
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After differentiation of Eq. (9) by z (this operation is mathemati-
cally correct because all the functions vanish when z / �N)
and following substitution of the expression
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vrvz

¼ � v
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�
1
r
v

vr
ðrsrzÞ

�
; (11)

we arrive at the following equation:
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where

s ¼ sr þ s4 þ sz: (13)

Note that Eq. (11) is obtained by differentiation of Eq. (3) by r.
Being derived on the basis of the first compatibility equation (4)

and equilibrium equations (2) and (3), Eq. (12) can be regarded as
the governing one for determination of the shear stress srz and total
stress s. Consequently, we opt for srz and s to be the key functions.
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