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a b s t r a c t

The tensile failure behaviour of defected structures is determined by plastic collapse and fracture.
Reference stress equations can be used to predict these failure modes. Up to now, some solutions have
been developed for flat plates and pipes. For curved plates, which are applied for pipe girth weld testing,
however, no solutions can be found in the literature. Therefore, the authors have developed a reference
stress equation that applies for curved plates with a part-through defect, located centrally along the
inner diameter. The solution is global, and similar to the Goodall and Webster equation for flat plates.
This article elaborates the analytical development and studies the influence of all geometrical parame-
ters, plate curvature in particular. It is found that the solution converges to the Goodall and Webster
equation for increasingly flat plates, and allows larger tensile stresses for increasingly curved plates.
Hence, the proposed equation is less conservative for inner-diameter defected curved plates than Goodall
and Webster’s equivalent for flat plates. Nevertheless, the difference between Goodall and Webster’s
solution and the proposed solution is fairly restricted (less than 5% for all considered geometries). An
extensive validation of the proposed equation is part of current and future work.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Generally, the failure of a defected structure is governed by two
different failure modes: plastic collapse and fracture. Both modes
can be simultaneously investigated using a failure assessment
diagram (FAD) as described in some standards and recommended
practices, e.g. R6 [1], BS7910 [2], FITNET [3], API RP579 [4].

On the one hand, the calculation of proximity to plastic collapse
in a FAD analysis (plotted on the horizontal axis) requires knowl-
edge of a limit load, defined as the collapse load of the structure,
assuming a perfectly plastic material. A situation of ‘local collapse’
can be investigated, in which case the limit load corresponds to
a collapse of the ligament ahead of the defect. In contrast, ‘global
collapse’ refers to the yielding of the entire cross section containing
the defect. Completely equivalent to the concept of a limit load is
the so-called reference stress. This stress is defined in such a way
that, when the limit load is achieved, it reaches the metal’s yield
strength. The concept of reference stress assumes a perfectly plastic
yielding behaviour. By definition, limit load and reference stress are
connected through the following relation [5]:

sref
sy

¼ P
PL

(1)

where sref is the reference stress, sy the yield stress, P the applied
load, and PL the limit load. In a FAD diagram, sref/sy is denoted as Lr
and plotted on the horizontal axis.

On the other hand, the calculation of proximity to fracture in
a FAD analysis (plotted on the vertical axis) requires knowledge of
the crack driving force, expressed in terms of stress intensity factor
K, crack tip opening displacement (CTOD) or J integral. K applies to
linear-elastic fracture mechanics, whereas CTOD and J integral are
related quantities in elastic-plastic fracture mechanics. To estimate
the crack driving force, Ainsworth [5,6] started from Kumar and
Shih’s [7] results to obtain an expression for J integral that requires
a reference stress:

J ¼ K2

E0

 
Eeref
sref

þ
s3ref

2Eeref s2y

!
(2)

In this expression, K is the linear-elastic mode-I stress intensity
factor, E0 is equal to Young’s modulus E for plane stress, and to
E/(1 � n2) for plane strain, where n is Poisson’s ratio. eref is the
reference strain, which corresponds to sref on the stressestrain
diagram of the material. A reference stress that corresponds to the
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limit load through Eq. (1) can also be used in Eq. (2). This was the
basis of the reference stress based FAD approach as described in R6
[1]. Numerical research by Lei [8] on flat plates with surface cracks
under tension indicated that, following that procedure, global
collapse solutions are better suited than local collapse solutions,
which were found to be overly conservative.

Pipeline girth welds unavoidably contain defects which should
be assessed to ensure the structural integrity of the pipeline. To that
purpose, so-called curved wide plate tests can be performed [9,10].
A curved wide plate specimen is a large-scale sample from a pipe-
line, containing a (deliberately) defected weld, which is loaded in
tension until failure. In an attempt to investigate curved wide plate
test results, the authors concluded that, up to now, no reference
stress solutions for curved plates exist. Only flat plate solutions
have been found, some of which are summarized in [11], others of
which can be found in [12e14]. Using those flat plate solutions as
an approximation for a curved geometry, an investigation of the
influence of plate curvature is impossible.

To get a better understanding of the failure behaviour of defected
pipeline girth welds, the authors have developed an analytical
reference stress solution for curved plates, which is elaborated in the
following. The article is structured as follows. Section 2 treats the
development of the equation. It starts from assumptions, similar to
those of the global Goodall andWebster equation for flat plates [12].
Next, Section 3 discusses the influence of plate curvature and other
geometrical parameters on the reference stress. Finally, conclusions
are drawn in Section 4. Also, an Appendix is added, that briefly
discusses the Goodall and Webster equation.

2. Development of the equation

2.1. Definition of geometry, material and load

The assumptions made below are similar to those made in the
development of the Goodall and Webster equation [12]. This
equation has been found to provide reasonable predictions of
plastic collapse and J integral as a crack driving force [8,15]. For
a short background on the Goodall and Webster reference stress
solution, we refer to Appendix A.

Fig. 1 shows the considered plate and defect geometry. First, the
curved plate is characterized by its width 2W (defined at

mid-thickness), thickness t and outer diameter Do. Dimensionless
variables which relate to these quantities are the diameter-to-
thickness ratio l ¼ Do/t and the width-to-diameter ratio u ¼ 2W/
Do. These two parameters could be considered as ameasure of plate
curvature, the limit case of a flat plate corresponding with l ¼ N

and u ¼ 0. Second, the part-through defect is assumed to have
a constant depth a over its length 2c, which is measured as the
distance between the two points where the defect tip meets the
inner surface of the plate. The length-to-depth ratio of the defect is
denoted as f ¼ 2c/a, and defect depth is related to plate thickness
using a ¼ a/t. To ensure conservativeness, the assumed defect
should circumscribe the actual defect. The meanings of l, u, f and
a are graphically summarized in Fig. 2. Further, the parameter
g¼ 2ca/2Wt is introduced as an approximate ratio of defect surface
to plate cross section. It is related to l, u, f and a as follows:

g ¼ fa2

lu
(3)

Note that a and g have a similar meaning as in the original
Goodall and Webster equation.

As regards the stress distribution, the following assumptions are
made. Thematerial is considered to behave rigide perfectly plastic.
The stress in the defected section is then assumed to beþsref below
the neutral axis, and �sref above. This neutral axis is oriented
horizontally, and located at a distance y from the point of the
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Fig. 1. Considered geometry, assumed stress distribution and definition of dimensionless parameters.
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Fig. 2. Overview of influence of dimensionless parameters on geometry: (a) parame-
ters related to plate, (b) parameters related to defect.
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