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a b s t r a c t

In this study, residual stress distributions in autofrettaged homogenous spherical pressure vessels sub-
jected to different autofrettage pressures are evaluated. Results are obtained by developing an extension
of variable material properties (VMP) method. The modification makes VMP method applicable for
analyses of spherical vessels based on actual material behavior both in loading and unloading and
considering variable Bauschinger effect. The residual stresses determined by employing finite element
method are compared with VMP results and it is demonstrated that the using of simplified material
models can cause significant error in estimation of hoop residual stress, especially near the inner surface
of the vessel. By performing a parametric study, the optimum autofrettage pressure and corresponding
autofrettage percent for creating desirable residual stress state are introduced and determined.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Hydraulic autofrettage is a process in which a cylindrical or
spherical pressure vessel is subjected to high internal pressure till
its wall becomes partially plastic. The resulting compressive hoop
residual stress produced after removing the pre-pressure improves
the fatigue life and load capability of the vessel [1e3]. This speci-
fication besides a comparatively reasonable cost of the process has
caused frequent and vast use of autofrettaged vessels in a variety of
applications, especially in the case of high and cyclic applied
internal pressure.

Spherical pressure vessels, despite difficulties in manufacturing,
due to appropriate stress and strain distributions are extensively
used in critical applications. Although, the study of autofrettage
technique in tubes has been the subject of several research projects
[4e7], autofrettage of spherical pressure vessels was only recently
considered [8e13]. Adibi-asl and Livieri [8] proposed an analytical
method for residual stress analyses of autofrettaged spherical
vessels. Their investigation is limited to materials which follow
a constrained form of modified Ramberg-Osgood, Isotropic or
kinematic hardening models during loading and unloading. Kar-
garnovin et al. [10] applied an elastic-linear work hardening model
and ignored the Bauschinger effect to evaluate optimum pre-
stressing pressure in a spherical vessel. While the response of the

material models applied in these investigations are not compatible
with the actual behavior of several of the most used materials in
pressure vessels [14,15], their results can not be reliably employed.
Parker and Huang [12] put forward analytical solution of auto-
frettaged spherical vessels incorporating more sensible material
model and verified their established method by comparing the
results of developed variable material property method at partic-
ular autofrettage percents. Perl and Perry [13] extended the existing
knowledge to provide more realistic solutions for the residual
stress fields in thick-walled autofrettaged spherical pressure
vessels. Applying the minimum weight and the maximum life
criterion, they also proposed an optimum design of autofrettage
process.

It is thanks to previous research efforts that a proper approxi-
mation of residual stress distribution in spherical pressure vessels
is achievable now, but still need to be more investigated.

To analyze the residual stress distribution induced by auto-
frettage process of a thick-walled spherical pressure vessel, we
employ an extension of the variable material property (VMP)
method introduced by Jahed and Dubey [16] and compared the
obtained results with the results of finite element analyses. In the
VMP method, the linear elastic solution of a boundary value
problem is used as a basis to generate its inelastic solution. The
material parameters are considered as field variables and their
distribution is obtained as a part of solution in an iterative manner.
This method was generally employed to homogeneous and inho-
mogeneous cylindrical pressure vessel and rotating disks [17e21].
The proposed extension makes the VMP method capable for
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analyzing the residual stresses in autofrettaged spherical pressure
vessels. The main advantage of this method is its capability in the
implementation of actual behavior of material obtained from
loading and unloading tests in the analyses.

In addition, the optimum pressure for autofrettage of the
spherical pressure vessels made of A723 and HB7 steels is discussed
here. In this study, an autofrettage percent has been defined as the
optimum value by which the significant compressive hoop residual
stress at inner surface of the vessel is achievable, while simulta-
neously the tensional hoop residual stress at outer surface is rela-
tively low.

2. Theoretical model

The components of total strain of an infinitesimally small
element located at a distance r from the center of a thick-walled
sphere can be represented as summation of elastic, 3eij and plastic,
3pij, strain components. The elastic part is given as,

3eij ¼
�
1þ n

E

�
sij �

�n
E

�
skkdij (1)

where dij, E, n are the Kronecker delta, elastic modulus and Poisson’s
ratio respectively. The plastic part of strain is given by Hencky’s
total deformation equation, 3pij ¼ fðsij � 1

3skkdijÞ where f is a scalar
function given by f ¼ 3

2
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, where 3peq and seq are the equivalent

plastic strain and equivalent stress, respectively. Consequently the
total strain in the element can be written as,
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In order to analyze a thick-walled spherical vessel, we divide the
vessel into a number of concentric thin spheres (layers) through the
thickness, where the inner radius of the interior layer and the outer
radius of exterior layer are equal to interior and exterior radii of the
vessel.

According to VMP approach, the total strain components of each
elasto-plastic layer can be calculated by the following equation:

3ij ¼
1þ neqðrÞ
EeqðrÞ sij �

neqðrÞ
EeqðrÞskkdij (3)

where neqðrÞ and EeqðrÞ are equivalent Poisson’s ratio and equiva-
lent elastic modulus of a layer with distance of r from the center of
sphere. Comparing equations (2) and (3), the following relation-
ships are obtained:

EeqðrÞ ¼ 3E
3þ 2Ef

(4)

neqðrÞ ¼ EeqðrÞð2n� 1Þ þ E
2E

(5)

Based on the VMP method, the elasto-plastic solution is achievable
by implementation of appropriate variable material constants and
performing the equivalent elastic analysis.

The elastic solution of a spherical layer with inner and outer
radii of ri and riþ1 and material constants of neq and Eeq is:
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where pi and piþ1 are internal and external pressures, u is radial
displacement and srad, sq and sf are stress components.

Based on equation (6), the inside and outside displacements of
each layer located at r, ui and uiþ1, are related to the inside and
outside pressures by:
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where:
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Fig. 1. Engineering stress-strain curve of A723 steel, after Toriano et al. [23].

Fig. 2. Engineering stress-strain curve of HB7 steel, after Troiano et al. [22].
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