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a b s t r a c t

A finite element formulation is developed for the analysis of thin-walled pipes based on thin shell theory.
The formulation starts with a Fourier series solution of the equilibrium equations developed in
a companion paper and develops a family of exact shape functions for each mode. The shape functions
developed are used in conjunction with the principle of stationary potential energy and yield a finite
element that is exact within the assumptions of the underlying shell formulation. The stiffness matrix
contribution for each mode n is observed to be fully uncoupled from those based on other modes ms n.
The resulting finite element is shown to be free from discretization errors normally occurring in
conventional finite elements. The applicability of the solution is illustrated through examples with
various loading cases and boundary conditions. A comparison with other finite element and closed form
solutions demonstrates the validity and accuracy of the current finite element.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction and scope

In a companion paper [1], the governing equilibrium conditions
and possible boundary conditions for thin-walled pipes were
developed and solved using a Fourier series solution. A closed form
solution was developed for two practical examples. While the
solutions developed are exact within the limitations of the
assumptions, the solution process was found to be particularly
lengthy to conduct by hand. In this context, the present paper
attempts to preserve the exactness of the solution while auto-
mating it by implementing a finite element solution based on the
exact solution of the field equations already developed.

2. Literature review

A comprehensive review on finite element formulations for the
analysis of pipes is provided in the series of review papers [2e5].
Most of the formulations were related to pipe bends subjected to
specific load patterns. For the most part, the work is applicable to
straight pipes (as straight pipes can be conceived as elbows with
infinite radius of curvature). A comparative review of
strainedisplacement relationships in various shell formulations
was presented in the companion paper [1].

In all the research discussed below, the kinematic assumptions
of the LoveeKirchhoff thin shell theory are adopted. These are (a)

straight fibres perpendicular to the middle surface before defor-
mation remain straight and perpendicular to the middle surface
after deformation, and (b) the radial normal stress and transverse
shear stresses are neglected.

This includes the work of Ohtsubo and Watanabe [6] who
developed a finite element as an assembly of ring elements. Their
formulation captures shear deformation and warping effects but
assumes inextensible hoop strains. The formulation is applicable to
both in-plane and out of plane bending. The displacement fields
were assumed to have a harmonic distribution in the circumfer-
ential direction. In the longitudinal direction, the displacement
fields were interpolated using Hermitian polynomials.

Bathe and Almeida [7] developed a four node finite element for
the linear analysis of elbows with large bend radii by assuming
a cubic Lagrangian interpolation for the tangential and radial
displacements over the length of the elbow. Their formulation
neither captured warping deformations nor radial expansion.
Subsequent improvements included developing interaction effects
between elbow elements and straight pipe segments [8] and
developing the non-linear capabilities for the element [9].

Militello and Huespe [10] further improved the element by
Bathe and Almeida [7] by capturing warping deformations by
interpolating the longitudinal displacements with cubic Lagrangian
polynomials. They expanded the tangential and radial displace-
ments using a limited number of Fourier series terms.

Another improvement to Bathe and Almeida’s element was
conducted by Abo-Elkhier [11] who adopted more complete dis-
placementestrain relations in their formulation.
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The pipe inextensibility assumption in the radial direction was
relaxed in the work of Yan et al. [12] who developed a formulation
for plastic limit load of pipe elbows. The remainder of their
formulation is consistent with that of Militello and Huespe [10]. The
longitudinal, tangential and radial displacements were all
expressed as Fourier series in the circumferential direction with
cubic Lagrangian interpolation polynomials for the longitudinal
displacement and Hermitian polynomials for the tangential and
radial displacements.

Karamanos [13] broadened the previous work tomodel buckling
instability of pipes. His work included non-linear elastic effects and
investigated the relationship between ovalization and buckling of
pipes subjected to constant bending moments. His work was fol-
lowed up by Karamanos et al. [14] who included the effects of
plasticity and internal pressure.

2.1. Expression for the potential energy

The total potential energy
Q

* of the system for a pipe element of
length [, mid-surface radius r and thickness t, undergoing displace-
ments u, v and w in the z (longitudinal), f (tangential) and r (radial)
directions, respectively, under externally applied tractions qu(z,f),
qv(z,f), and qw(z,f) acting on the middle surface of the pipe [1] is
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In Eq. (1), n is Poisson’s ratio, E is Young’s Modulus of the pipe
material and G is the shear modulus of the pipe material.

2.2. Displacement fields

Consistently with the formulation in the companion paper [1],
the mid-surface displacements are expressed as Fourier expansions
of the coordinate f as:

uðz;fÞ ¼ a0ðzÞ þ
Xa
n¼1

anðzÞcosnfþ
Xa
n¼1

bnðzÞsinnf

vðz;fÞ ¼ c0ðzÞ þ
Xa
n¼1

cnðzÞcosnfþ
Xa
n¼1

dnðzÞsinnf

wðz;fÞ ¼ f0ðzÞ þ
Xa
n¼1

fnðzÞcosnfþ
Xa
n¼1

gnðzÞsinnf

ð2a� cÞ

In Eqs. (2aec), functions a0ðzÞ, anðzÞ, bnðzÞ, c0ðzÞ, cnðzÞ, dnðzÞ,
f0ðzÞ, fnðzÞ and gnðzÞ are displacement functions to be determined
from equilibrium considerations. When a is infinite, the series
solution converges to the exact solution of the problem within the

limitations of the assumptions made. In practicality, the series
solution will be truncated as a is chosen as a finite number.

2.3. Formulation of exact shape functions

The closed form solution for the unknown displacement func-
tions a0ðzÞ;.; gnðzÞ, which satisfy the homogeneous part of the
equilibriumconditions,were derived in the companionpaper [1] as:

a0ðzÞ ¼ he0ðzÞiT1�8fA0g8�1; c0ðzÞ ¼ hC0ðzÞi
T
1�8fA0g8�1;

f0ðzÞ ¼ hF0ðzÞi
T
1�8fA0g8�1

anðzÞ ¼ hAnðzÞi
T
1�8fFng8�1; dnðzÞ ¼ hDnðzÞi

T
1�8fFng8�1;

fnðzÞ ¼ henðzÞiT1�8fFng8�1

bnðzÞ ¼ hAnðzÞi
T
1�8fGng8�1; cnðzÞ ¼ �hDnðzÞi

T
1�8fGng8�1;

gnðzÞ ¼ henðzÞiT1�8fGng8�1 ð3a� iÞ

n ¼ 1; ::a

In Eqs. (3aei), vectors fA0g8�1, fFng8�1, fGng8�1 are

hA0i
T
1�8 ¼ �

A0;1 A0;2 A0;3 A0;4 A0;5 A0;6 A0;7 A0;8
�T

hFniT1�8 ¼ �
Fn;1 Fn;2 Fn;3 Fn;4 Fn;5 Fn;6 Fn;7 Fn;8

�T
hGniT1�8 ¼ �

Gn;1 Gn;2 Gn;3 Gn;4 Gn;5 Gn;6 Gn;7 Gn;8
�T

(4a ec)

They consist of integration constants to be determined from the
boundary conditions of the problem, and the function vectors

he0ðzÞiT1�8, hC0ðzÞi
T
1�8, hF0ðzÞi

T
1�8, hAnðzÞi

T
1�8, hDnðzÞi

T
1�8, henðzÞiT1�8

as obtained in [1] are summarized in Appendix A.We recall that the
solution fields for the equilibrium equations as developed in [1]
were observed to fully uncouple the contribution of mode n from
that of mode msn, a feature that is exploited in the present
formulation.

In the present paper, rather than assuming conventional poly-
nomial functions, we start with the exact solution of the displace-
ment fields (Eqs. (3aei)) to formulate the exact shape functions.
This is done by expressing the vectors of integration con-
stantsfA0g8�1, fFng8�1, fGng8�1 in terms of the nodal displace-

ments hD0iT1�8; hDn;1iT1�8; hDn;2iT1�8 defined as

hD0iT1�8 ¼ ha0ð0Þ c0ð0Þ f0ð0Þ f ’0ð0Þ a0ð[Þ c0ð[Þ f0ð[Þ f ’0ð[ÞiT�
Dn;1

�T
1�8 ¼ hanð0Þ cnð0Þ fnð0Þ f ’nð0Þ anð[Þ cnð[Þ fnð[Þ f ’nð[ÞiT�

Dn;2
�T
1�8 ¼ hbnð0Þ dnð0Þ gnð0Þ g’nð0Þ bnð[Þ dnð[Þ gnð[Þ g’nð[ÞiT

(5aec)

through
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in which matrices ½L0�8�8, ½Ln;1�8�8 and ½Ln;2�8�8 are defined in
Appendix B. Eqs. (6aec) are solved for the vectors of integration
constants yielding

fA0g8�1 ¼ ½L0��1
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