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a b s t r a c t

A new multi-point univariate decomposition method is presented for structural reliability analysis
involving multiple most probable points (MPPs). The method involves a novel function decomposition at
all MPPs that facilitates local univariate approximations of a performance function in the rotated
Gaussian space, Lagrange interpolation for univariate component functions and return mapping to the
standard Gaussian space, and Monte Carlo simulation. In addition to the effort in identifying all MPPs, the
computational effort in the multi-point univariate method can be viewed as performing deterministic
response analysis at user-selected input defined by sample points. Compared with the existing multi-
point FORM/SORM, the multi-point univariate method developed provides a higher-order approximation
of the boundary of the failure domain. Both the point-fitted SORM and the univariate method entail
linearly varying cost with respect to the number of variables. However, the univariate method with less
than nine sample points requires fewer calculations of the performance function than the point-fitted
SORM. Numerical results indicate that the proposed method consistently generates an accurate and
computationally efficient estimate of the probability of failure.

Published by Elsevier Ltd.

1. Introduction

Structural reliability analysis frequently involves calculation of
a component probability of failure

PFhP½gðXÞ < 0� ¼
Z

gðxÞ<0

fXðxÞdx; (1)

where X ¼ fX1;.;XNgT˛RN is a real N-dimensional randomvector
defined on a probability space (U;F ; P) comprising the sample space
U, the s-field F , and the probability measure P; g : RN/R is
a performance function, such that UFhfx : gðxÞ < 0g represents the
failure domain; and fX : RN/R is the joint probability density
function of X, which typically represents loads, material properties,
and geometry. The most common approach to compute the failure
probability in Equation (1) involves the first- and second-order
reliability methods (FORM/SORM) [1e3], which are respectively
based on linear (FORM) and quadratic (SORM) approximations of the
limit-state surface at a most probable point (MPP) in the standard
Gaussian space. When the distance b between the origin and MPP
(a point on the limit-state surface that is closest to the origin), known
as the Hasofer-Lind reliability index, approaches infinity, FORM/

SORM provide strictly asymptotic solutions. For non-asymptotic
(finite b) applications involving a highly nonlinear performance
function, its linear or quadratic approximation may not be adequate
and, therefore, resultant FORM/SORM predictions should be inter-
preted with caution [4,5]. In latter cases, an importance sampling
method developed by Hohenbichler and Rackwitz [6] can make
FORM/SORM result arbitrarily exact, but it may become expensive if
a large number of costly numerical analysis, such as large-scale finite
element analysis embedded in the performance function, are
involved. In addition, if multiple MPPs exist in either asymptotic or
non-asymptotic applications, or if there are contributions from other
regions around local minima besides the region around a singleMPP,
classical FORM/SORM may yield erroneous estimates of the failure
probability [7e10]. Therefore, methods that can account for both
sources of errors due to high nonlinearity and multiple MPPs are
required for structural reliability analysis.

For reliability problems entailing multiple MPPs, the failure
probability can be estimated by the multi-point FORM/SORM, which
leads to a probability of the union of approximate events [3]. Der
Kiureghian and Dakessian [7] proposed a so-called “barrier”method
to successively find multiple MPPs. Subsequently, FORM/SORM
approximations at each MPP followed by a series system reliability
analysis were employed to estimate the failure probability.While the
multi-point FORM/SORM account for all MPPs, the resultant effects
are limited to first- or second-order approximations of the
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performance function. More recently, Au et al. [8] presented
asymptotic approximations and importance sampling methods for
solving reliability problems withmultiple MPPs. Mahadevan and Shi
[9] proposed amultiple linearizationmethod inwhich the limit-state
surface is approximated usingmultiple linear hyperplanes. However,
for a general reliability analysis involving a large number of random
variables, it is difficult to determine the number of linearization
points and locate them systematically. Gupta and Manohar [10]
proposed a global response surface method, which constructs
a response surface of the limit state by using the global information,
rather than the local information around a single MPP. This method
requires defining a new set of coordinates and a number of shifting
origins in advance. If the performance function is implicit and/or the
number of random variables is very large, it is difficult to apply this
strategy. Recently, the authors have developed a new class of reli-
ability methods, called the mean- [5] and MPP-based [11,12]
dimensional decomposition methods, which are based on a finite
hierarchical expansion of the performance function in terms of input
variables with increasing dimension. Although these decomposition
methods provide higher-order approximations of a performance
function, they cannot account for multiple MPPs [11,12]. Hence,
developing a multi-point decomposition method in the spirit of the
multi-point FORM/SORM that accounts for high nonlinearity and
multiple MPPs is the principal motivation of this work.

This paper presents a newmulti-point univariate decomposition
method for predicting component reliability of mechanical systems
subject to random loads, material properties, and geometry. Section
2 gives a brief exposition of novel function decomposition at anMPP
that facilitates a lower-dimensional approximation of a general
multivariate function. Section 3 describes the proposed univariate
method that involves local univariate approximations of the
performance function with multiple MPPs, Lagrange interpolation

of univariate component functions, return mapping, and Monte
Carlo simulation. The section also explains the computational effort
and flowchart of the proposed method. Three numerical examples
involving elementary mathematical functions and a structural
dynamics problem illustrate the method developed in Section 4.
Finally, Section 5 provides conclusions from this work.

2. Performance function decomposition at the mth MPP

Consider a continuous, differentiable, real-valued performance
function g(x) that depends on x ¼ fx1;.; xNgT˛RN . The trans-
formed limit state hðuÞ ¼ 0 is the map of gðxÞ ¼ 0 in the standard
Gaussian space (u space), as shown in Fig. 1 for N= 2. Let the
performance function contain M number of MPPs u*

1;.;u*
M with

corresponding distances b1;.; bM (Fig. 1).
For the mth MPP, define an associated local coordinate system

vm ¼ fvm;1;.; vm;Ng, where vm;N is the coordinate in the direction of
theMPP, as depicted in Fig.1. In the vm space, denote themthMPP by
v*m ¼ f0;.;0; bmg and the limit state surface by ymðvmÞ ¼ 0,
which is also a map of the original limit state surface gðxÞ ¼ 0. The
decomposition of a general multivariate function ymðvmÞ, described
by [11e17]

ymðvmÞ ¼ ym;0 þ
XN
i¼1

ym;i
�
vm;i
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼bym;1ðvmÞ

þ
XN

i1;i2 ¼1
i1<i2

ym;i1i2

�
vm;i1 ; vm;i2

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼bym;2ðvmÞ

þ.þ ym;12.N
�
vm;1;.; vm;N

�
; (2)

h(u) = 0

u1
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Fig. 1. A performance function with multiple most probable points.
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