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a b s t r a c t

The internal dynamics of the DNA base pairs is studied starting from the generalized coupled plane base-
rotator model of DNA, obtained by Yomosa and later improved by Takeno and Homma. We conceive the
double-stranded DNA as an anisotropically coupled spin chain simple model. The generalized Hamilto-
nian expressed in terms of quasi-spin operators is averaged over the generalized coherent states in the
Perelomov sense, in order to obtain the classical non-linear evolution equations of this molecular system
where the inhomogeneity has not been considered. This approach provides the equations of motion,
which could be reduced to a nonlinear Schrödinger equation with a saturable nonlinearity. This non-
linear equation, under certain restrictions in the parametric space, supports traveling periodic triangular,
bell, bubble and kink like solutions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Despite the complex nature of the DNA, its internal dynamics
have been studied using theoretical models. Broadly, these models
take into account the fundamental structural aspects of DNA and
the degrees of freedom most likely to dominate conformational
changes. These simplified models are based on longitudinal and
transverse motions, bending, stretching and rotations [1–6]. In
many cases the theoretical results produced by these models not
only give a good understanding of the biological processes studied,
but also match experimental data. As an example let us mention
the model proposed by Peyrard and Bishop [7,8], in which the
main contribution to the double helix melting process is given by
the stretching of the hydrogen bonding, leading to the bases
opening. Instead of the rotational motion of bases, this model in-
cludes two different internal motions, which means that the bases
are displaced with respect to their equilibrium positions along the
direction of the hydrogen bonding. The potential for the hydrogen
bonding is modeled by a Morse potential and the anharmonic
coupling due to the stacking between the neighboring bases is
added. The same process was studied by Christiansen et al. [9]
including the transversal motions, longitudinal motions, and tor-
sional motions. Other non-linear models implemented are: the
dynamical mechanisms of transitions between different DNA
forms [10], regulation of transcription [11], protein synthesis (in-
sulin production) [12], carcinogenesis [13], among others. The base

pairs play a fundamental role, since the genetic information is
encoded in them. The rotational motion of the bases contributes
more towards the opening of bases. This opening happens in most
of the biological processes, such as conformational changes, de-
naturation, transcription and replication. This opening of bases
causes non-linear molecular excitations along the DNA double
helix. A model based on the rotational motion of bases was de-
veloped by Yomosa (the plane-base rotator model) [14], being a
generalization of the Frenkel–Kontrova model [15]. This model
takes into account the main agents responsible for keeping the
internal structure of this molecule: the hydrogen bond energy, the
stacking energy, and the features of the base pairs. These coupled
base pairs are allowed to rotate in planes perpendicular to the
helical axis. This plane-base rotator model was improved and
generalized to a coupled three-dimensional rotators model by
Takeno and Homma [16,17]. This has been refined and extended in
[18–20].

On the other hand, the generalized coherent states approach
has been employed widely in many branches of physics: astro-
physics, orbital magnetism of two-dimensional electrons, nuclear
physics, mathematical physics, bio-physics, quantum optics, see
for example [21–25] just to mention a few. One method for
treating such models, in semi-classical fashion, is to choose the
trial state based on the symmetry of the analyzed model. Thus, the
generalized coherent states approach is commonly used in the
case of spin or quasi-spin models.

In this paper, we study the pure dynamics of DNA concerning
the existence, among others, of the soliton-like excitations. For the
sake of simplicity we confine ourselves to considering the Takeno–
Homa model [16,17] whose Hamiltonian is expressed in terms of
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quasi-spin operators. The following section is devoted to briefly
explain the plane-base rotator model. Consequently, in the third
section we will apply the generalized coherent states to average
the generalized Hamiltonian, we shall pass from a quasi-quantum
problem to a classical one. From the Hamiltonian we can obtain
the classical equations of motion. These equations are treated in
the third and the fourth section and reduced to a non-linear
Schrödinger equation with saturable non-linearity, that finally
shows the appearance of different types of analytical solutions.
Finally, in the last section we present some numerical results and
several remarks.

2. The mathematical plane-base rotator model

We follow the reasoning made by Takeno and Homma [17].
Three fundamental considerations were employed for studying
the structure and dynamics of DNA: (i) the main dynamical
contributions can be obtained by paying attention to the bases
in the double strands. (ii) The fluctuations of positions are
produced by the rotational motion of the bases at the points
where these are attached to the strand. (iii) The fluctuation of
positions under certain circumstances leads to breaking of the
hydrogen bonds, inducing the unzipping of the double strands
of DNA.

We consider the conventional B-form of DNA with helical axis
along, for say, the z direction. The double strands of DNA are re-
presented by the S and ′S ribbons wound around each other, re-
spectively. The base attached to the strand is represented by an
arrow, the base attached to its complementary strand is re-
presented by a conjugate arrow. The strands of DNA stay together
by hydrogen bonds that occur between complementary nucleotide
base pairs. The conformation and stability of the DNA double helix
is mainly determined by the stacking energy between adjacent
bases or intrastrand energy, the energy of hydrogen bonding be-
tween the complementary bases or interstrand energy, among
other energies. The interstrand energy is given by the distance
between the tips of the nth base (Qn) and its complementary base
( ′ )Q n and it can be written as,
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and in the complementary ′S strand with respect to the helical
axis, to neglect the longitudinal compression waves along the di-
rection of the helical axis and r is the radius of the circle depicted
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Thus, we conceive the double-stranded DNA as an aniso-
tropically coupled spin chain model, as seen in Fig. 2 where the
base–base interaction is restricted to the nearest neighbors inter-
action, that is, the nth base(spin) interacts with the ( − )n 1 th base
(spin) and the ( + )n 1 th base (spin).

By considering the relevance of inter-strand energy Takeno and
Homma proposed the study of the following Hamiltonian:
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The first term of (2) represents the stacking energy between
the nth base and its nearest neighbors in the plane normal to the
helical axis, Jn and ′Jn correspond to the intrastrand constant for the
S and the ′S strand. When Kn and ′Kn are not equal to Jn and ′Jn,
respectively, an anisotropy is introduced in the intrastrand inter-
action. For the quasi-spin lattices corresponding to the strands S
and ′S , Jn and ′Jn represent ferromagnetic exchange integrals due to
spin–spin interaction. Next, the contribution of the inter-strand
energy is taken into account and λn and μn represent measures of
the interstrand interactions between the opposite bases in both
strands. The local field energy of the base and the complementary
base or the local field energy of the spin in both sites is measured
by the coupling constant hn. Finally, An and ′An represent the uni-
axial anisotropic coefficients (with positive values) due to the
magneto crystalline anisotropy in the ferromagnetic spin system,
causing the rotation of bases in a plane normal to the helical axis
of the DNA. The inhomogeneity of the DNA strand is not con-
sidered in the Hamiltonian (2). From the Hamiltonian (2) ex-
pressed in terms of quasi-spin operators we proceed to obtain the
classical equations of motion by applying the so-called reduction
procedure.

3. Classical equations of motion

Since the Hamiltonian (2) is expressed in terms of generators of
the ( )SU 2 group and due to the symmetry of the problem we use
the Perelomov generalization [26,27] in the construction of co-
herent states. In order to study quasi-spin Hamiltonian the main

Fig. 1. Projection of the nth base pair in a plane.

Fig. 2. DNA as an anisotropically coupled spin chain.
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