
Cylindrical membrane partially stretched on a rigid cylinder

Alexey M. Kolesnikov
Department of Elasticity Theory, Institute of Mathematics, Mechanics and Computer Science, Southern Federal University, ul. Milchakova 8a, Rostov-on-Don
344090, Russian Federation

a r t i c l e i n f o

Article history:
Received 16 February 2016
Received in revised form
24 July 2016
Accepted 2 August 2016
Available online 3 August 2016

Keywords:
Elastic membrane
Non-linear elastic
Contact problem
Friction
Coulomb's law

a b s t r a c t

We consider the equilibrium problem of a hyperelastic thin-walled tube. One end of the tube is placed
over an immovable, rough, rigid cylinder. We assume that the deformation of the tube is finite and
axisymmetric. The tube is modeled by a cylindrical membrane. The membrane is composed of an in-
compressible, homogeneous, isotropic elastic material. We use Bartenev–Khazanovich (Varga) strain
energy function. A contact between the membrane and the rigid cylinder is with a dry friction. The
membrane will not slide off the cylinder only by a friction and at a sufficient contact area. The friction is
described by Coulomb's law. We study a minimum length of the membrane which is in contact with the
rigid cylinder and is needed to the equilibrium of the membrane.

& 2016 Published by Elsevier Ltd.

1. Introduction

In this study we consider finite axisymmetric deformations of a
cylindrical elastic membrane. Finite axisymmetric deformations of
thin-walled cylindrical membranes have been studied in many
papers. The elastic membrane theory under finite strains was gi-
ven in [1,2] and others. For axisymmetric deformations of a
membrane of revolution the equilibrium equations reduce to or-
dinary differential equations. To solve obtained non-linear
boundary-value problems numerical methods are often used. For
homogeneous circular cylindrical membranes, which composed of
an isotropic material and subjected to a normal surface load, the
Pipkin's first integral is used [3]. In [2] the problem of a super-
position of a small deformation on known finite deformation has
been considered. In [4,5] the equations governing the incremental
state of stress in an orthotropic circular membrane tube have been
derived and discussed. These methods can be applied to study a
stability of equilibrium states.

The problem of inflation and tension an homogeneous cylind-
rical membrane with a constant thickness has an explicit solution
[2]. In [6–12] non-monotonic “force–deformation” relations and
stability of cylindrical membrane composed of hyperelastic ma-
terials have been studied under large strains. The stability under
overall axial compression of a finitely inflated cylindrical mem-
brane composed of highly elastic material has been investigated in
[13]. The effect on stability of the flow of an incompressible fluid
through the tube has been considered in [14].

The problem of stretching a cylindrical membrane into an an-
nulus has been studied in [15]. The axially symmetric deforma-
tions of a circular cylindrical membrane in which the ends are
pulled apart while retaining the radii of the ends fixed have been
considered [16,17]. A circular cylindrical membrane subjected to
longitudinal extension and twist has been studied in [18,19]. In
[19] the effect of radially expanding one end of a cylindrical
membrane has been investigated also. In [17] the stationary po-
tential-energy and complementary-energy principles was used to
provide upper and lower bounds on a solution of the problem. In
[16,18,19] the problems are solved by numerical methods.
Wrinkling of the membrane due to twist is taken into account in
an approximate way by introducing a relaxed strain energy func-
tion in [18,19].

Numerical and experimental analyses of inflation and long-
itudinal extension have been carried in [20–22]. The
inhomogeneous cylindrical membranes have been studied in
[9,22-26]. The equilibrium of connecting two sections of different
materials or/and different radii has been investigated in [23–25,9].
Local imperfections were considered in [22]. A hyperelastic cy-
lindrical membrane with non-uniform thickness pressurized by
internal gas or fluid has been considered in [26].

The finite deformations of an isotropic circular cylindrical
membrane subjected to a finite extension and gradually filled with
liquid have been investigated both theoretically and experimen-
tally in [27]. The instability and the bifurcation of the equilibrium
states of fluid-loaded pre-stretched cylindrical membranes have
been studied in [28].

The contact problems of a cylindrical membrane and a solid
body are studied few. Finite deformations of a cylindrical
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membrane enclosing a rigid body have been considered in [29–
33]. The contact problems of a pressurized cylindrical membrane
and a surrounding solid body have been studied in [34–39]. The
pressure–distension characteristics of rubber tube enclosed in
constraining tubes has been investigated experimentally in [34]. In
[36] axisymmetric multiple-contact problems were investigated,
together with comparison with experiment. An example of
stretch-blow-moulding was also given. We note that most of the
authors considered frictionless contact problems. In [39] the cy-
lindrical membrane is inflated and is constrained by a soft sub-
strate. Frictionless and adhesive contacts are modeled during in-
flation and deflation.

Theory of hyperelastic cylindrical membrane is applied to
model nanotubes [40], to create new devices [41,42], in bio-
mechanics [31–33] and others.

In this paper we consider a thin-walled tube composed of hy-
perelastic material. Its one end is placed over an immovable,
rough, rigid cylinder. It can show from the experiment or the
equilibrium equations that the tube tends to slide off the rigid
cylinder. If the tube does not fixed on the cylinder, then the
equilibrium is possible due to friction. It is clear that some contact
area is also needed for equilibrium.

We assume that a bending stiffness is neglected. We model the
thin-walled tube by a semi-infinite cylindrical membrane. A ma-
terial of the tube is non-linear elastic, isotropic and in-
compressible. A Bartenev–Khazanovich model of the material is
used. We solve the problem in the framework of the non-linear
theory of elastic membranes. We consider an axisymmetric de-
formation of the cylindrical membrane. We assume that Cou-
lomb's law holds for frictional stresses between the membrane
and the rigid cylinder.

The problem reduces to a boundary-value problem for non-
linear second-order ordinary differential equations. We derive an
explicit solution for an incompressible Bartenev–Khazanovich
material. We analyze the effects of a friction coefficient and a ra-
dius of the rigid cylinder on the contact area necessary to equili-
brate the membrane.

2. Finite axisymmetric deformations of membranes of
revolution

Our analysis is based on the so-called direct theory of elastic
membranes. To describe configurations of the membrane, we
consider a reference surface of revolution, defined parametrically
by a vector-valued position function

= ( ) + ( )r s z sr e e ,r z

where { }φe e e, ,r z are the unit vectors of the cylindrical coordinate
system φ{ }r z, , . Let φ( )s, be Lagrangian coordinates which serve as
Gaussian coordinates on the reference surface.

We consider deformations that map the reference surface of
revolution onto the other surfaces of revolution. The particle φ( )s,
at φ( )sr , is displaced to a point with position

= ( ) + ( )R s Z sR e e .r z

The equilibrium equations can be written in the form
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where L1 and L2 are the principal stress resultants in the directions
of the tangents to the meridian curves and the curves of latitude

respectively, κ1 and κ2 are the principal curvatures of the deformed
surface, λ1 and λ2 are the principal stretches, ξ is the surface
normal load, ξ1 is the surface tangential load along a generator.

The principal stretches and curvatures are
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where ()′ = ()d ds/ , ψ is the angle between the tangent to a gen-
erator and the vector er .

The general strain–energy function for an incompressible ma-
terial is given by λ λ= ( )W W ,1 2 . The stress resultants can be writ-
ten in the form
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where h is the uniform initial thickness of the membrane. The
thickness H of the deformed membrane is determined by
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Our calculations are based on the Bartenev–Khazanovich (Var-
ga) strain–energy function for isotropic elastic incompressible
material [43]. This function has the form
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and the stress resultants are given by
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3. Cylindrical membrane partially stretched on a rigid cylinder

Let the membrane be a semi-infinity right circular cylinder of
radius r0, in its reference configuration (Fig. 1a):

φ π( ) = ( ) = ∈ [ + ∞) ∈ [ ]r s r z s s s, , 0, , 0, 2 .0

We assume that the one end of the membrane partially stret-
ched on a rough, rigid cylinder with radius >R r0 0 (Fig. 1c). The
membrane fits tightly to a side surface of the rigid cylinder. We
denote by L the length of the part of the membrane which is in
contact with the rigid cylinder, and by ∈ [ ]s s0, L the Lagrangian
coordinates of membrane particles which are in contract. We as-
sume that Coulomb's law holds for frictional stresses between the
membrane and the rigid cylinder. Surface loads are absent on that
part of the surface of the deformed membrane, which is not in
contact with the rigid cylinder.

In general, the Coulomb friction is modeled by ξ ξ| | ≤ | |f1 , where f
is a coefficient of static friction. The frictional stresses are opposite
to the motion that the membrane would experience in the absence
of friction. We consider a limit case of equilibrium, such that the
frictional stresses in all parts of the contact region reach the limit
simultaneously. The membrane tends to slide off the rigid cylinder.
So, we assume that the frictional stresses are opposite to the Z-axis
and ξ ξ| | = | |f1 in the contact region. We have (Fig. 2a)
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We consider the part of the deformed membrane for which
>s s1( ∈ ( + ∞))s s ,L1 (Fig. 2b). The force equilibrium equation of this
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