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a b s t r a c t

This paper is devoted to the generalization of a well-known result on reducible equations by Courant
and Friedrichs [7] and a motivational result on compressible Euler system within the context of ideal
gases by Li et al. [10]. The characteristic decomposition technique has been used to prove that any
hyperbolic state, adjacent to a constant state, is simple for a pseudo-steady isentropic irrotational flow,
modeled by Euler equations, in van der Waals fluids. Furthermore, this result is extended to full Euler
system in self-similar coordinates provided the pseudo-flow characteristics are extending into a con-
stant state.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Simple waves play a fundamental role in describing and
building up solutions of flow problems in gasdynamics [7]. A
smooth solution is called simple wave if it depends on a single
parameter rather than a pair of parameters. Hyperbolic system in
two independent variables,

+ ( ) = ∈ > ( )A x tu u u 0, , 0, 1t x

where = ( … )u u uu , , , n
T

1 2 and ×n n matrix ( )A u has n real and
distinct eigenvalues, can be diagonalized in terms of Riemann
invariants for n¼2. The invariance of Riemann invariants allows
us to infer that any flow adjacent to a constant domain is simple;
however, system (1) may not be diagonalized in terms of Rie-
mann invariants for >n 2 [8]. Moreover the technique of in-
variance of Riemann invariants, to show that it is a simple flow
adjacent to a constant region, breaks down if coefficient matrix A
in (1) depends on ( )x t u, , rather than u only. Another important
tool, known as characteristic decomposition, to study the hy-
perbolic system of conservation laws was first discussed by Dai
and Zhang [2] for the pressure gradient system and later on by Li
et al. [10] in their pioneering work on the compressible Euler
system within the context of ideal gases. It is used extensively to
overcome the difficulties encountered in the hodograph techni-
que for the interaction of rarefaction waves [3–6]. It helps us to
find not only Riemann invariants for homogeneous reducible
quasilinear hyperbolic systems but also Riemann variants in
some hyperbolic systems [1,4,5]. It is effectively used in providing

a passage to derive a priori estimates of solutions [13,14,17].
Furthermore, d'Alembert's formula can be derived by using the
idea of characteristic decomposition for one-dimensional wave
equation.

The main purpose of this paper is to generalize the well-known
theorem of Courant and Friedrichs [7] for reducible systems and a
motivational work carried out by Li et al. [10] for ideal gases to the
pseudo-steady irrotational Euler system for van der Waals fluids.
Here, we have used characteristic decomposition technique, used
extensively by Zheng, Jiequan, and their collaborators [1,3–6,11–
14,19]. The basic equations of the present study are the Euler
equations in two-dimensions which can be written as
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where ρ is the fluid density, ( )u v, are the fluid velocity compo-

nents, p is the pressure and ( )ρ ρ= + +E e u v
2

2 2
is the total energy

density with e being the specific internal energy. In this paper, we
consider a polytropic van der Waals fluid having the equation of
state of the form [6,9]
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where τ =
ρ
1 is the specific volume, S is the specific entropy, ( )K S is a

positive constant depending on the specific entropy, δ is the
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dimensionless quantity lying in the interval δ< ≤0 2
3
( δ = 2

3
for

monatomic fluid), a and b are fluid dependent parameters re-
presenting the attraction between the constituent particles and the
compressibility limit of the molecules, respectively. The presence of
a and b modifies non-trivially the analysis of Euler equations as the
density in the model must be bounded. In the absence of inter-
molecular force of attraction, i.e., =a 0, the equation of state (3) can
be seen as a perfect fluid polluted by dusty particles [16]. The
thermodynamic variables satisfy the condition τ= −TdS dh dp with
T as temperature and h the specific enthalpy; if τ and S are chosen
as independent variables, many calculations of Euler system (2) can
be simplified; for instance the speed of sound c is given by

( )τ τ τ( ) = − ′( ) = −δ τ
τ τ
( + )

( − )δ+c S p, K

b

a2 1 22

2 , the parameter b lies in the

interval τ≤ <b0 , and the energy equation (2)4 may be written as
+ + =S uS vS 0t x y .

2. Steady two-dimensional Euler system for van der Waals
fluids

Two-dimensional isentropic irrotational Euler equations for the
compressible van der Waals fluids can be expressed as
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supplemented by Bernoulli's law
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where C1 is an arbitrary constant. System (4), in vector–matrix
notation, can be written as
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which has the following characteristic equation:
λ λ( − ) + + ( − ) =c u uv c v2 02 2 2 2 2 . Characteristic form of the system

(6) yields λ∂ + ∂ =± ∓ ±u v 0 where λ∂ ≔∂ + ∂± ±x y. Since λ− is a function
of u and v, we have
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Furthermore, we have
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Now using (9), and (10) into (8), we get
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brief, we state the following theorem:

Theorem 1. There holds the following characteristic decomposition
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