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a b s t r a c t

This paper is mainly dealing with the stochastic responses of nonlinear vibro-impact (VI) system coupled
with viscoelastic force excited by colored noise. By the aid of approximate conversion for the viscoelastic
force, the original stochastic VI system is transformed into an equivalent stochastic system without
viscoelastic term. Then, the equations of the converted system are simplified by non-smooth transfor-
mation, and the stochastic averaging method is employed to solve the above simplified system. A Van der
Pol VI oscillator coupled with viscoelastic force is worked out in detail to illustrate the application of the
mentioned method, and therewith the analytical solutions fit the numerical simulation results based on
the original system. Therefore, the present analytical means of investigating this system is proved to be
feasible. Additionally, the exploration of stochastic P-bifurcation by two different ways is also demon-
strated in this paper through varying the value of the certain system parameters. Besides, it shows a
noteworthy fact that assigning zero or a positive value to the magnitude of viscoelastic force can also lead
to the bimodal shape of different degrees in the process of stochastic bifurcations.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Viscoelasticity of engineering materials is a kind of property
which is preferred. Impact is also inevitable in nature, technology
and society. Therefore, considering the effects of viscoelastic be-
havior in VI system play a significant role in understanding the
physical mechanism of control systems in the real world, and is of
interest in the field of nonlinear science.

Impact under dynamic loads is a dynamic phenomenon pro-
duced by the repeatedly contact among the mechanical compo-
nents with clearance or kinematical constraint, which means that
a lumped mass impacts a rigid barrier with finite velocity. As a
type of non-smooth system, VI system received much attention in
recent years. We can see the impact factor contributes to some
fascinating phenomena for dynamic system, such as corner bi-
furcation [1], grazing bifurcation [2–4], sliding bifurcation [5,6],
chatter and sticking motions [7,8].

In some of the existing literature, the research result of the
vibro-impact systems is quite abundant. Nordmark [9] devoted to
studying the dynamical characteristics of vibro-impact oscillator,
then obtained the corresponding Jacobin array via the Poincaré
map, and also observed the stationary feature of the non-smooth

system. Aidanpää [10] investigated successively the stability and
bifurcations of the stationary state for a one-degree-of-freedom
vibro-impact oscillator. Besides, many attentions have been draw
to stochastic response of vibro-impact system, and some effective
means appear gradually. Quasi-static method has been adopted by
Stratonovich [11]. The non-smooth transformation was introduced
by Zhuravlev [12] for vibro-impact system with rigid barriers.
Some scholars [13–17] extended the stochastic averaging to deal
with the vibro-impact system. Additionally, a modified version of
quasi-conservative averaging was proposed by Roberts [18] to
solve the stochastic systems involving a non-white random ex-
citations. By applying the Poincaré map, Luo [19] and Xie [20]
considered bifurcations as well as chaos of a two-degree-of-free-
dom linear vibro-impact systems. Feng [21,22] investigated the
mean response of impact systems by introducing the mean Poin-
caré map.

Viscoelasticity of materials in engineering practice shows that
energy storage as well as mechanical energy dissipation, which is a
superior characteristic and has been favored by many scholars.
Fortunately, scholars have been dedicated to exploring a con-
stitutive model describing the viscoelastic property, and then
some models [23–25] have been put forward and developed in the
last couple of years, which is roughly divided into differential
model and integral model. Further, a simple linear viscoelastic
model based on the generalized Maxwell model [26–28] has
been widely used. In the investigation of practical phenomena,
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stochastic perturbation is inevitable [29], and the study of dy-
namic behaviors of viscoelastic system has experienced a devel-
opmental process from deterministic case [30–33] to stochastic
one.

Clearly, the stochastic viscoelastic systems have gradually
caused attention among researchers. For instance, Spanos [34] has
demonstrated the response of a class of oscillators with non-linear
damping to stochastic excitation. Potapov [35] analyzed the sta-
bility of stochastic viscoelastic systems by stochastic averaging.
Zhu and Cai [36] analyzed random vibration of viscoelastic system
via generalized Maxwell model and quasi-conservative averaging
method, and pointed out that the magnitude of viscoelastic force
can be positive and negative, then gave the conclusion of the in-
fluence of the magnitude taking changing negative values on the
response of the system. Zhao and Xu et al. [37,38] considered
stochastic responses of viscoelastic system under Gaussian white
noise excitation and discussed stochastic bifurcation induced by
viscoelastic parameters, in which the magnitude has been only
gotten the negative value. So the situation of the magnitude taking
a non-negative value deserves some consideration.

Besides, Potapov [39] applied Lyapunov's direct method to
study the almost-sure stability of a viscoelastic column excited by
a randomwideband stationary process. Potapov [40] also analyzed
stability of elastic and viscoelastic systems under non-Gaussian
excitation by the numerical method. Xie [41] investigated the
moment Lyapunov stability of a two-dimensional viscoelastic
system subject to bounded noise excitation. Floris [42] explored
the stochastic stability of a hinged-hinged viscoelastic column. The
transient response of linear viscoelastic systems with model un-
certainties and stochastic excitation by a time-domain formulation
has been suggested by Soize and Poloskov [43]. Stochastic stability
of the harmonically and randomly excited Duffing oscillator with
damping modeled by a fractional derivative was surveyed by Chen
[44]. Ling [45] discussed the stability of a viscoelastic system un-
der wideband noise by means of the largest Lyapunov exponent. It
can also be found that the viscoelastic property of materials has
great significance for the research and practice, and deserves more
attention.

The occurrence of impacts in practical engineering often leads
to some negative effects, and while viscoelastic force can suppress
the vibration of the impact structures with the aid of its char-
acteristic. Inspired by this, we consider the dynamical behavior of
the VI systemwith viscoelastic force. In the stochastic case, there is
still less clear research on the nonlinear VI system together with
viscoelastic behavior excited by colored noise at present. As far as
the authors know, the bimodal shape in the process of stochastic
bifurcations caused by the non-negative magnitude have not yet
been found in the current existing literatures which study the
dynamical behaviors of stochastic system with the viscoelastic
force and impacts. In this paper, we are committed to dealing with
the system mentioned above, and the stationary probability den-
sity functions (PDFs) of which are discussed in detail. The rest of
this paper is arranged as follows. System setup and description,
non-smooth treatment and stochastic averaging are reported in
Section 2. Then, a Van der Pol VI system is given to illustrate the
application of the method in Section 3. Furthermore, the means to
study this system turns out to be effective through comparing the
analytical solutions with the numerical simulation results, and
stochastic bifurcations are obtained the exploration by two angles.
Conclusions are performed in the last section.

2. System setup and the method

The model adopted in this paper is a single degree of freedom
nonlinear VI system coupled with viscoelastic force subjected to

Gaussian colored noise excitations, which is dominated by the
following equations
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where D D,1 2 and τ τ,1 2 denote the intensities and correlation times
of the colored noises η ( )t and ξ ( )t , respectively. In Eq. (1b),

< ≤e0 10 is the coefficient of restitution factor, whose value re-
flects the degree of energy loss of the system when impact occurs,
and signs “ −̇x ” and “ +̇x ” refer to value of response velocity just before
and after the impact. Thus, Eq. (1b) provides the reversal of ve-
locity ̇x at the time instant of impact to. Under the condition of

=e 10 , this special case is modeled as elastic impacts with getting
the exceedingly small energy loss.

Besides, Z represents viscoelastic force in Eq. (1a), whose de-
scription is exhibited as the following form:
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where ( )I t0 is known as the relaxation function, and can be com-
monly characterized by the generalized Maxwell model
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here ( )I t0 is composed of a number of relaxation domains, that is, i
stands for the first i relaxation domain ( =i 1, 2, 3, ...). Each λi is
named as the relaxation time of each small component, and βi
denotes general elastic modulus which may be either positive or
negative. Both parameters can be determined by the specific
problems.

Based on Liu and Zhu's theory [46], assuming that the coeffi-
cients of all excited terms are proportional to small parameters,
substitution of Eq. (4) into Eq. (3) will yield an approximate ex-
pression for Z:
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where ω̄ is the average frequency according to Zhu and Cai [36],
which is determined by ω̄ = π

T
2 .
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