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We consider the planar circular equilateral restricted four body-problem where a test particle of in-
finitesimal mass is moving under the gravitational attraction of three primary bodies which move on
circular orbits around their common center of gravity, such that their configuration is always an equi-
lateral triangle. The case where all three primaries have equal masses is numerically investigated. A
thorough numerical analysis takes place in the configuration (x, y) as well as in the (x, y) space in which
we classify initial conditions of orbits into four main categories: (i) bounded regular orbits, (ii) trapped
chaotic orbits, (iii) escaping orbits and (iv) collision orbits. Interpreting the collision motion as leaking in
the phase space we related our results to both chaotic scattering and the theory of leaking Hamiltonian
systems. We successfully located the escape and the collision basins and we managed to correlate them
with the corresponding escape and collision times of orbits. We hope our contribution to be useful for a
further understanding of the escape and collision properties of motion in this interesting dynamical
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system.
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1. Introduction

Over the years several dynamical systems consisting of few
bodies have been investigated and various models have been pro-
posed in order to understand and explain the orbital behaviour of
realistic celestial systems or as benchmark models where new
mathematical theories can be tested. The most extensively studied
dynamical system in celestial mechanics is, beyond any doubt, the
classical restricted three-body problem, where the third body (test
particle) is considered massless so as not to influence the motion of
the two primaries which move in Keplerian orbits (circular or el-
liptical) around their common center of gravity [24,41,42,61,67,68].
The modern applications to space mechanics and dynamics are
probably even more cogent than the classical applications. Today
numerous aspects in space dynamics are of paramount importance
and of great interest. The applications of the restricted three-body
problem create the basis of most of the lunar and planetary theories
used for launching artificial satellites in the Earth-Moon system and
in solar system in general.

In the same vein the restricted four-body problem is quite si-
milar in the sense that the problem deals once more with the
motion of an infinitesimal particle under the attraction of three
primary bodies [19,20,30,35,51,52,63]. There are many reasons
justifying the study of the four-body problem (restricted or not).
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To begin with, there are many four-body systems in our Solar
System which can be approximated, in a first order, by a four-body
problem. A characteristic example is the Sun-Jupiter-Saturn sys-
tem where the fourth body can be a planet, an asteroid or a
satellite of Jupiter or Saturn. Another interesting example is the
Sun-Earth-Moon system where the fourth body can be a space
vehicle [21,27,34,55]. A special case of the Sun-Earth-Moon re-
stricted four-body problem is the bi-circular problem, where the
masses of the primary bodies are revolving in a quasi-bi-circular
motion [9].

The Sun-Jupiter-Trojan asteroid can also be viewed as a
restricted four-body problem, where the primaries are in the
particular configuration of an equilateral triangle. This special
configuration is known as the planar equilateral restricted four-
body problem (PERFBP). Many scientists studied this dynamical
system [18,37,38,46,59,60]. [4] investigated the PERFBP with equal
masses, while [10] determined the total number of the equilibrium
points for any value of the mass parameter and numerically ex-
plored their linear stability. They also computed some families of
symmetric periodic orbits. Similar results were obtained in [17]
but for the case of two equal masses, while the existence of blue
sky catastrophe around a specific collinear equilibrium point was
presented in [16]. In a recent paper [12] a large number of families
of non-symmetric periodic orbits around Jupiter and the Trojan
asteroids was found. Moreover, in [5] it was proved that any
double collision can be regularized by using a Birkhoff-type
transformations.
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The restricted four-body problem has also applications in ga-
lactic dynamics. It is known that approximately two-thirds of the
10" stars in our Galaxy belong to multi-stellar systems [48]. In
particular, around one-fifth of these stars form triple systems,
while a rough estimate suggests that a further one-fifth of these
triple systems belongs to quadruple or higher systems, which can
be modelled by the four-body problem [36].

A lot of work has been done regarding the equilibrium points of
the PERFBP and their stability [7,10,25,33,40,43,44,54,56]. Another
interesting issue is the location of periodic orbits in the PERFBP
[6,11,17,58]. In recent years many perturbing forces, such as the
oblateness, radiation forces of the primaries, Coriolis and cen-
trifugal force, and variation of the masses of the primaries have
been included in the study of PERFBP [1,28,29,31,32,43,56].

In this paper we shall try to explore the orbital dynamics in the
PERFBP by performing a systematic orbit classification using the nu-
merical methods introduced in the pioneer works of [41,42]. The same
numerical methods have also been successfully used in recent similar
studies [67-69,47]. The structure of the paper is as follows: In Section
2 we provide a detailed presentation of the principal aspects of the
PERFBP. All the computational methods we used in order to determine
the character of the orbits are described in Section 3. In the following
section, we conduct a thorough numerical investigation revealing the
overall orbital structure (bounded regions and basins of escape/colli-
sion) of the system and how it is affected by the value of the Jacobi
constant. Our paper ends with Section 5, where the discussion and the
conclusions of this work are given.

2. Presentation of the mathematical model

Let us describe the basic properties of the PERFBP. We consider
three primary bodies with masses m;, i = 1, 2, 3, in a triangular (or
Lagrangian) configuration in which the three primaries move in
circular orbits in the same plane around their common center of
mass. The three bodies are always located at the vertices of an
equilateral triangle [64]. The fourth body is known as an in-
finitesimal mass (or test particle) and it moves in the same plane
acting upon the attraction of the three primaries. It is assumed
that the mass of the fourth body is so small that its influence on
the motion of the primaries is practically negligible.

We adopt a rotating rectangular system whose origin is the
center of mass of the primaries which rotates with a uniform
angular velocity, so that the centers of the three primaries to be
fixed on the (x, y)-plane. Without loss of generality we assign the
primary of mass m; on the positive x-axis at G = (x;, 0). Then
the other two primaries with masses m, and ms, respectively

are located at G = (xz, %) and G= (xz, - %) where x =3,

Xy = — “/73(1 — 2u), while pu is the mass parameter. We normalize
the units with the supposition that the sum of the masses and the
distance between the primaries both be equal to unity. Therefore
my=1-2uand my =m3 =y, sothat m +my + mg=1.

Regarding the value of the mass parameter there are three
limiting cases:

e When u = 0 we obtain the rotating Kepler's central force pro-
blem with m; = 1 located at the origin of the coordinates.

e When u= % we obtain the classical circular restricted three-
body problem, with two equal masses m; =m; = % which is
known as the Copenhagen problem.

e When y = 1 we obtain the symmetric case with three primary
bodies with masses equal to %

In our study we shall consider the last case.
The forces experienced by the test particle in the coordinate

system rotating with angular velocity » =1 and origin at the
center of the mass can be derived from the following total time-
independent effective potential function:
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are the position vectors from the three primaries to the test par-
ticle, respectively. Using a synodical system we fixed the position
of the primaries in order to eliminate the time-dependence in the
potential function.

The scaled equations of motion describing the motion of the
test body in the synodical coordinates (x, y) read
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where dots denote time derivatives, while the suffixes x and y
indicate the partial derivatives of Q(x, y) with resect to x and y,
respectively. Here it should be noted that Egs. (3) are invariant
under the symmetry

(XY, %,9) = (=t x, -y, — X, ¥). 4)

The dynamical system (3) admits the well known Jacobi in-
tegral

J&x,y, %, 9) =22x,y) - (2 +y?) =C, (5)

where x and y are the velocities, while C is the Jacobi constant
which is conserved and defines a three-dimensional invariant
manifold in the total four-dimensional phase space. Thus, an orbit
with a given value of its energy integral is restricted in its motion
to regions in which C < 2Q(x, y), while all other regions are for-
bidden to the test body. If the problem is written in canonical
coordinates, then the Jacobi integral corresponds to the value of
the Hamiltonian and it is known as the total orbital energy. The
value of the total orbital energy E is related with the Jacobi con-
stant by C = - 2E. It should be emphasized that the existence of
the Jacobi integral, allows us to study the problem by fixing the
energy level of the value of the Jacobi constant.

In the classical restricted three-body problem there are five
coplanar equilibrium points [61]. In the PERFBP on the other hand,
Ref. [33] proved that the existence as well as the total number of
the equilibrium points (collinear and non-collinear) strongly de-
pends on the value of the mass parameter (see also [10]). In our
case where all primaries have the same mass m; = my; = m3 = %
the system admits four collinear (on the x-axis) equilibrium points
and six non-collinear (off the x-axis) ones. Due to the equality of
the masses of the primaries the PERFBP admits a symmetry and
the ten equilibrium points lie on the (x, y)-plane symmetrically to
the axes of symmetry y=0, y = +/3 and y = — /3. Fig. 1 shows the
position of the ten equilibrium points along with the centers of the
primary bodies, while in Table 1 we provide the exact coordinates
of the equilibrium points. All ten equilibrium points are unstable
[4,10]. A thorough discussion of the equilibrium points can be
found in [8,39,54]. Furthermore, an analytical examination of the
stability of the equilibrium points can be found in [15], while a
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