
The secular equation for non-principal Rayleigh waves in deformed
incompressible doubly fiber-reinforced nonlinearly elastic solids

Nguyen Thi Nam a, Jose Merodio a,n, Pham Chi Vinh b

a Department of Continuum Mechanics and Structures, E.T.S. Ing. Caminos, Canales y Puertos, Universidad Politecnica de Madrid, 28040 Madrid, Spain
b Faculty of Mathematics, Mechanics and Informatics, Hanoi University of Science, 334, Nguyen Trai Str., Thanh Xuan, Hanoi, Vietnam

a r t i c l e i n f o

Article history:
Received 29 August 2014
Received in revised form
14 April 2016
Accepted 15 April 2016
Available online 16 April 2016

Keywords:
Rayleigh waves
Explicit and implicit secular equations
Orthotropic half-spaces
Fiber reinforcements

a b s t r a c t

The explicit and implicit secular equations for the speed of a (surface) Rayleigh wave propagating in a
pre-stressed, doubly fiber-reinforced incompressible nonlinearly elastic half-space are obtained. Hence,
the anisotropy is associated with two preferred directions, thereby modelling the effect of two families of
fiber reinforcement. One of the principal planes of the primary pure homogeneous strain coincides with
the free surface while the surface wave is not restricted to propagate in a principal direction. Results are
illustrated with numerical examples. In particular, an isotropic material reinforced with two families of
fibers is considered. Each family of fibers is characterized by defining a privileged direction. Furthermore,
the fibers of each family are located throughout the half space and run parallel to each other and per-
pendicular to the depth direction, i.e. the free surface is a plane of symmetry of the anisotropy. The wave
speed depends strongly on the anisotropic character of the material model as well as the direction of
propagation.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to extend the analysis of [1]
dealing with Rayleigh waves for materials reinforced with one
family of fibers to materials reinforced with two families of fibers
in the framework of nonlinear elasticity. This is motivated by
several factors. First, the use of doubly fiber-reinforced elastic
composites is common in engineering applications. In addition,
there is a lot of interest in the acoustics of biological soft tissues
(see for example, Destrade et al. [2]). Soft biological tissues have
been recognized as highly anisotropic due to the presence of col-
lagen fibers [3] and are modeled as orthotropic materials with two
families of fibers.

The Rayleigh wave existence and uniqueness problem has been
resolved with the aid of the Stroh formalism [4]. Fu and Mielke [5]
and Mielke and Fu [6] also have shown the uniqueness of the
surface wave speed based on an identity for the surface-im-
pedance matrix. The surface-wave speed can also be obtained
from secular equations of implicit as well as explicit form. The
explicit secular equations often admit spurious roots that have to
be carefully eliminated, as opposed to the numerical methods
based on the Stroh formulation or on the surface-impedance
matrix. However, the applications of the explicit secular equations

are not limited to numerically determine the surface-wave speed.
They are also convenient tools to solve the inverse problem that
deals with measured values of the wave speed and their agree-
ment with material parameters (see for instance [7,8]). Explicit
secular equations have been given by Malischewsky [7] for iso-
tropic solids, Ting [9,10], Ogden and Vinh [11], Vinh and Ogden
[12,13], Vinh et al. [1] for anisotropic solids and Vinh [14,15] for
pre-stressed media, among others.

We establish a procedure to obtain both the explicit and im-
plicit secular equations of non-principal Rayleigh waves propa-
gating in incompressible, doubly fiber-reinforced, pre-stressed
elastic half-spaces. For transversely isotropic materials the explicit
secular equation was given in [1] while the implicit one was given
in [16]. We build upon these results and use the polarization
vector method to get the secular equation in explicit form. The
implicit secular equation is obtained from the so-called propaga-
tion condition. The latter equation is used to eliminate the spur-
ious roots that arise in the explicit secular equation.

The study of the propagation of Rayleigh-type surface waves in
an elastic half-space subject to pre-stress goes back to the pio-
neering work of Hayes and Rivlin [17] and since then it has at-
tracted the attention of many researchers. There is a lot of interest
in using the equations governing infinitesimal motions super-
imposed on a finite deformation of a nonlinear elastic half-space
because it is applicable to several topics. These include: the non-
destructive evaluation of prestressed structures before and during
loading (see, for example, Makhort [18,19], Hirao et al. [20],
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Husson [21], Delsanto and Clark [22], Dyquennoy et al. [23,24], Hu
et al. [25]), the acoustics of soft solids with particular attention to
the analysis of biological soft tissues (see, for instance, Destrade
et al. [2,26,27], Vinh and Merodio [28,29] and references therein),
and the (incremental) stability of the free surface of a deformed
material (see, for instance, Destrade et al. [30–32]), among others).
Indeed, surface waves have been studied extensively in seismol-
ogy, acoustics, geophysics, telecommunications industry and ma-
terials science (see Adams et al. [33]).

In Section 2, the basic constitutive equations associated with
this study are presented. This includes the material model as well
as the corresponding equations for infinitesimal waves super-
imposed on a finite deformation consisting of a pure homo-
geneous strain. In Section 3, the Stroh formalism is applied to the
analysis of infinitesimal surface waves propagating in a statically,
finitely and homogeneously deformed doubly fiber-reinforced
half-space. The free surface is assumed to coincide with one of the
principal planes of the primary strain, but a propagating surface
wave is not restricted to a principal direction (see [34] for a par-
allel work that enlightens this analysis). The implicit and explicit
secular equations are presented. In Section 4, the results are illu-
strated numerically in respect of a strain–energy function used to
model soft tissue (see [3]).

2. Basic equations

2.1. Kinematics

Consider an elastic body whose reference configuration is de-
noted by 0 and a finitely deformed equilibrium configuration. The
deformation gradient tensor associated with the deformation is
denoted by F. In addition, let ( )X X X, ,1 2 3 be a fixed rectangular
coordinate system in 0. The precise notation necessary for the
analysis will be introduced later on.

Composite materials and some soft tissues are modeled as in-
compressible isotropic elastic solids reinforced with preferred di-
rections (see [35,36] and references therein). Each preferred di-
rection is associated with a family of parallel fibers. Here, two
families of fibers are considered. We denote by M with compo-
nents ( )M M M, ,1 2 3 and N with components ( )N N N, ,1 2 3 the unit
vectors in these directions in 0.

The invariants of the right Cauchy–Green deformation tensor,
=C F FT , where the symbolT indicates the transpose of a matrix,

most commonly used are the principal invariants (see, for instance
[37]), defined by

= = ( − ( )) = ( )I I I IC C Ctr , tr , det . 11 2
1
2 1

2 2
3

The (anisotropic) invariants associated with M and C are usually
taken as

= ·( ) = ·( ) ( )I IM CM M C M, . 24 5
2

For N and C, the associated invariants are

= ·( ) = ·( ) ( )I IN CN N C N, . 36 7
2

Finally, the invariant related to the combination of M, N, and C is

= ·( )( · ) ( )I M CN M N . 48

2.2. Material model

The anisotropic nonlinear elastic strain–energy function W
depends on F through the invariants of the right Cauchy–Green
deformation tensor. For incompressible materials, the strain en-
ergy function can be written as = ( )W W I I I I I I I, , , , , ,1 2 4 5 6 7 8 since

=I 13 . If M and N are perpendicular then the number of in-
dependent invariants is six (see [38] for details). The Cauchy stress
is
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where p is a Lagrange multiplier associated with the in-
compressibility constraint, the shorthand notations

= ∂ ∂ =W W I i/ , 1, 2, 4, 5, 6, 7, 8i i have been used and I is the 3�3
identity tensor. The Cauchy stress tensor can be written as

σ = + ( − ) + ⊗

+ ( ⊗ + ⊗ ) + ⊗
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where =B FFT, m¼FM, and n¼FN. It follows that, in general, the
principal directions of stress and strain do not coincide.

In the biomechanics literature, several strain energy functions
given by an isotropic elastic material augmented with the so-
called reinforcing models can be found. We extend the reinforcing
models for one family of fibers (see [36] for complete details) to

μ= ( − ) + ( ) + ( ) + ( ) + ( ) + ( ) ( )W I f I f I g I g I G I
2

3 71 1 4 2 6 1 5 2 7 8

in order to illustrate the results. This strain energy function cap-
tures the essential features of the analysis that follows. We want to
establish results related to the kinematical properties of the in-
variants I4 and I6 as well as the invariants I5 and I7. The results
allow us to distinguish the effects of the different invariants. The
invariant I8 is also considered so as to evaluate its influence. For
specific details and analysis of the reinforcing models we refer to
[35,36]. Here, we just mention that the energy function and the
stress must vanish in the reference configuration. In Section 4, we
will further make this clear since a certain strain–energy function
is used.

2.3. Linearized incremental equations of motion

Consider an incompressible, doubly fiber-reinforced, semi-in-
finite body in its unstrained state 0 that occupies the region

≥X 02 . Fibers of each family run parallel to each other and per-
pendicular to the depth direction X2, i.e. =M 02 and =N 02 . The
body is subjected to a finite pure homogeneous strain with prin-
cipal directions given by the Xi-axes. A finitely deformed (pre-
stressed) equilibrium state e is obtained. A small time-dependent
motion is superimposed upon this pre-stressed equilibrium con-
figuration to reach a final material state t , called current con-
figuration. The vector components of a representative particle are
denoted by Xi, ( )x Xi , ˜ ( )x tX,i in 0, e and t , respectively. The
deformation gradient tensor associated with the deformations

→0 and →0 is denoted by F̄ and F, respectively, and are
given in component form by

¯ =
∂
∂

=
∂
∂ ( )

∼
F

x
X

F
x
X
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It is clear from (8) that

δ¯ = ( + ) ( )F u F , 9iA ij i j jA,

where δij is the Kronecker operator, ( )u X t,i denotes the small
time-dependent displacement associated with the deformation

→ and a comma indicates differentiation with respect to the
indicated spatial coordinates in .

The necessary equations including the linearized equations of
motion for anisotropic incompressible materials are summarized.
The incremental components of the nominal stress tensor Sji are
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