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a b s t r a c t

The article is concerned with mathematical models for media with oscillating inclusions. These models
consist of mutually connected equations, one of which is the wave equation for carrying medium and
others are equations of motion for partial oscillators. To close these models, we use cubic and nonlocal
equations of state for the carrying medium. Travelling wave solutions to these models are studied in
detail. Using qualitative analysis methods, the phase space is shown to contain periodic, homo- and
heteroclinic trajectories. Moreover, in the case of nonlocal models we observe the creation of quasi-
periodic and chaotic regimes. Bifurcations of localized regimes are studied via the Poincaré section
technique.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In non-equilibrium conditions natural materials begin to
manifest hidden properties reflecting peculiarities in their internal
structure. Among the most important properties of the medium
we distinguish the discreetness of a medium and oscillating dy-
namics of the structural elements [1,2].

To describe these features in mathematical models for media,
the extra volumetric forces causing the movements of the struc-
tural elements are incorporated in the continual models [3–5]. We
thus consider the structured media as mutually penetrated con-
tinua. One of them obeys the wave equation, whereas another one
is the oscillating inclusion described by the set of equations for
partial oscillators. This leads us to the following equations of
motion for structured media:
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where ρ is the density of the carrying medium, s is the stress;
( )u x t, , ( )w x t,j are the displacements of the bulk medium and a

typical oscillator with the natural frequency ωj; ρmj is the density
of oscillating inclusions. In this report we restrict our considera-
tion to the case when N¼1, i.e. only one type of oscillators is taken
into account.

But, under high-intense impulse loading, the structured

substances often manifest strong nonlinear effects. Moreover,
when the medium is far from equilibrium, various relaxing pro-
cesses within the elements of the structure take place and then
the linear model should be supplemented by physical nonlinearity
and nonlocal effects. This can be displayed in the corresponding
equations of state for the carrying media closing model (1). Within
the framework of the presented models we are going to study
travelling wave regimes and their bifurcations when the para-
meters of nonlinearity and nonlocality are varied.

In Section 2 we classify the wave solutions of model (1) with
the cubic equation of state. These solutions are described by the
planar Hamiltonian dynamical system which admits detailed ex-
plorations via qualitative analysis methods. Section 3 deals with
the model incorporating the spatio-temporal nonlocal effects.
Using the Poincaré section technique, the localized attractors in
the four dimensional dynamical system were investigated.

2. Wave solutions to model (1) with the cubic equation of state

We are interested in the travelling wave solutions having the
form

= ( ) = ( ) = − ( )u U s w W s s x Dt, , , 2

where D is the constant wave velocity.
Let us consider model (1) with the cubic equation of state

σ = ∂
∂

+ ∂
∂

+ ∂
∂ ( )

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠e

u
x

e
u
x

e
u
x

.
31 2

2

3

3

After the substitution of expression (2) into (1) and (3), system (1)
reads

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nlm

International Journal of Non-Linear Mechanics

http://dx.doi.org/10.1016/j.ijnonlinmec.2016.04.010
0020-7462/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: skurserg@gmail.com (S.I. Skurativskyi).

International Journal of Non-Linear Mechanics 84 (2016) 31–38

www.sciencedirect.com/science/journal/00207462
www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijnonlinmec.2016.04.010
http://dx.doi.org/10.1016/j.ijnonlinmec.2016.04.010
http://dx.doi.org/10.1016/j.ijnonlinmec.2016.04.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2016.04.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2016.04.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2016.04.010&domain=pdf
mailto:skurserg@gmail.com
http://dx.doi.org/10.1016/j.ijnonlinmec.2016.04.010


σ′ = − ′ ( )D U D mW , 42 2

σ = ′ + ′ + ′ ( )e U e U e U , 51 2
2

3
3

( )Ω″ + − = ( )W W U 0, 62

where Ω ω= −D 1.
From (4) and (5) it follows
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Excluding ′W from (6) with the help of (7) leads to the fol-
lowing dynamical system:
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System (8) has the fixed points
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Analysing the stability of fixed points in the linear approximation,
it is easy to verify that the fixed point O is characterized by the
eigenvalues λ Ω= α

α
−2 21 1

1
, α ≠ 01 . Therefore, at α< <0 11 the origin

is a saddle, whereas in other cases it is a centre.
Case 1: At first, consider the case α = 01 . Then, instead of system

(8), it is preferable to deal with the following dynamical system:
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which has the same fixed points as system (8). In the vicinity of
fixed points ±A the linearized matrices ±J have the form

=±
±

⎛
⎝⎜

⎞
⎠⎟J

J
0 1

0
,

21

where

( )
( )( )Ω α α

α α α
α
α

= −
+ ± +

± +

=
( )

±J
k k

k

2 3 12 sgn 1 4

3 4
,

.
10

21

2
2
2

2

2 2
2

3
2

3

2
2

It is clear that the eigenvalues of matrices ±J satisfy the equation
λ − =±J 02

21 and, consequently, the type of points ±A stability de-
pends on the sign of the following expression:
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So, from the analysis of Δþ it follows that if α > 02 and > −k 1/4
point +A is a centre. If α < 02 and − < < −k1/4 2/9, then point +A
is a saddle, and, finally, for > −k 2/9 point +A is a centre. Con-
sidering point −A , one should change the signs of inequalities for
α2 to opposite ones.

In fact, we can classify the phase planes of the dynamical
system (9) varying parameter k only. For instance, ass-
ume α = − <1 02 and consider the phase planes when

∈ (− − ) ∪ {− } ∪ (− +∞)k 1/4; 2/9 2/9 2/9 ; .
For > −k 2/9, both points ±A are centres and the asymptotes

R¼0 and α α= −R 2 /32 3 are observed. It is easy to be convinced
that for >k 0 the fixed points ±A lie in the different half planes
(Fig. 1a), whereas ±A lie in the negative half plane if − < <k2/9 0
(Fig. 1b). Moreover, the asymptote α α= −R 2 /32 3 lies between the
fixed points for proper k. Due to the existence of the asymptotes
and the closed trajectories passing through the fixed points, non-
analytic solutions can be observed. In particular, the periodic tra-
jectories passing through the origin (curve 4 Fig. 1b) correspond to
compactons, i.e. wave solutions with a compact support [6,7].
Other non-analytic solutions can be constructed by means of
combining the curves 3–2 or 6–5–7–2 (Fig. 1b). The schematic
profiles of R(s) for these non-analytic solutions are depicted in
Fig. 2.

If we choose the parameter k from the interval ( − − )1/4; 2/9 ,
then the phase plane (Fig. 1c) contains the saddle −A whose se-
paratrices form a homoclinic loop, and the centre +A . As in the
previous case, we can construct several non-smooth regimes like
1–2–3, 2–6–7–8, 4–5–2.

At = −k 2/9 we see (Fig. 1d) an exotic situation where the
phase trajectory goes through two fixed points separating smooth
and non-smooth periodic regimes.

Case 2: Now assume that α ≠ 01 . Then the trajectory R¼0 is not
singular. System (8) has three fixed points O, ±A and two asymp-

totes =
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. Typical phase planes, in general, have

been presented in [8].
To supplement phase portraits analysis, we use the Hamilto-

nian for system (8)
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Using this function, the analytical expression describing the
homoclinic loop of the saddle O has the following form:
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Note that the function Z(R) is not an even one due to the presence
of terms with α2. The asymmetry of phase space associated with
α2 is encountered in studies of materials exhibiting the different
tensile and compressive responses [9].

Let us now estimate the maximal deviation Rmax from the fixed
point O and consider its dependence on wave velocity D. Analysing
the curves defined by (11), one can conclude that the function Z(R)
undergoes maximal deviation from O in the points where the
homoclinic trajectory intersects the axis Z¼0. Therefore, Rmax

obeys the equation
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Assuming that α ε= ⪡12 , this equation can be reduced to the
equation
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derive the approximate solution of (12) in the form
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