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a b s t r a c t

This paper describes a method to analyze the elasto-plastic large deflection of a curved beam subjected
to a tip concentrated follower load. The load is made to act at an arbitrary inclination with the tip
tangent. A moment-curvature based constitutive law is obtained from linearly hardening model. The
deflection governing equation obtained is highly non-linear owing to both kinematics and material non-
linearity. It is linearized to obtain the incremental differential equation. This in turn is solved using the
classical Runge–Kutta 4th order explicit solver, thereby avoiding iterations. Elastic results are validated
with published literature and the new results pertaining to elasto-plastic cases are presented in suitable
non-dimensional form. The load to end angle response of the structure is studied by varying normalized
material and kinematic parameters. It is found that the response curves overlap at small deflection
corresponding to elastic deformation and diverge for difference in plastic property. The divergent re-
sponse curves intersect with each other at higher deflection. The results presented also show that the
approach may be used to obtain desired non-uniformly curved beam by suitably loading a uniform
curvature beam.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Large deflection of slender elastic beam under the influence of
a terminal force a.k.a elastica has been of interest since the time of
Euler [1]. With the invention of smart materials, engineering ap-
plications involving large beam deflection have expanded con-
siderably over the last few decades [2]. Many of such applications
involve curved beams with terminally acting follower forces in-
ducing inelastic large deflections. In the present work an attempt
is made to introduce a simple approach to predict and subse-
quently study these problems.

The elastica problem in its simplest form is that of a horizontal
slender cantilever under the action of a conservative vertical
terminal load. The large deflection in elastica is essentially a quasi-
static phenomenon due to finite rotation under small strain con-
dition applied to an Euler–Bernoulli beam. Assuming this condi-
tion to hold true, the elastica problem has evolved to include
material non-linearity, non uniform cross section, and non-con-
servative forces etc.

The governing equation of the elastica is a two point boundary
value problem and is non-linear due to geometric non-linearity.
Analytical solutions to such problems are limited to evaluation of

elliptic or Jacobian integrals. For a recent review on analytical
methods, the reader may find [3] useful.

The analytical solutions are implicit in nature for load or dis-
placement and are generally expressed in terms of the end slope.
To obtain explicit load–displacement responses required in en-
gineering applications, various semi-analytical techniques are de-
vised. Homotopy perturbation and Adomian decomposition
methods are two of the most popular semi-analytical techniques;
some of the relevant ones are [4–8] and many of the references
therein. The semi analytical techniques generally deal with sim-
pler variations of elastica dealing with elastic problems and render
solutions in the form of long expressions.

To solve more complicated problems of elastica like non-linear
elasticity, various numerical approaches are adopted. Though FEM
appears to be the most popularly adopted approach, many com-
plicated elastica problems can be solved by easier or more com-
putationally economic approaches. These non-FEM approaches
may be broadly looked into as an algorithm which involve a nu-
merical integration scheme coupled with a root finding iterative
technique [9,10]. Yu and Johnson [11] coined the terminology
‘plastica’ indicating an extension of the closed form elastica theory
to incorporate plasticity. They solved the problem a cantilever
under conservative compressive force using the perturbation
technique coupled with numerical integration, considering an
elastic-perfectly plastic materials model. Refs. [12,13] considered
bi-linear elasto-plastic moment–curvature based constitutive law
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in solving large deflection problems of slender structures.
Non-conservative terminal force which follow the deformed

beam profile, induce additional complexity for analysis as it poses
the question of adequacy of static approaches. It was Beck [14]
who first estimated the buckling load of an elastic column under a
tangentially acting compressive follower load by dynamic analysis.
Rao and Rao [15] found that static approaches are applicable to
sub-tangential follower load systems, provided the load is lesser
than the critical flutter (dynamic instability) causing force.

Though an extensive literature exist for problems of elastic
straight beam under follower forces [16–19], relatively less litera-
ture deals with curved beam under follower forces. In the seminal
work of Argyris and Symeonidis [20], elastic curved beam under
various follower loads is studied in depth by employing FEM. Spric
and Saje [21] used finite difference method to study the large
deflection of curved elastica under tip concentrated follower load.
Nallathambi et al. [22] solved the curved cantilever beam under a
tip concentrated follower load by numerical integration starting
from free end coupled with one parameter shooting method.
Shvartstman [23] solved the same by direct integration of an initial
value problem obtained by change of variable from the two point
boundary value problem. Additionally he showed that a curved
elastic beam under follower load can become unstable only by
flutter i.e. to say divergence instability does not exist. Very re-
cently, Ghuku and Saha [24] obtained closed form solution of a
curved cantilever elastica under dead load. So far, only planar
cases have been discussed. In a recent work by [25], a compre-
hensive analysis has been carried out on both in-plane and out-of-
plane response using an intrinsic formulation and shooting.

The motivation of the present work is driven by a relative
dearth of literature dealing in large elasto-plastic deflection of
curved beam under follower load. Evidently additional complexity
in terms of material non-linearity is brought in by considering
plasticity into the existing geometrically non-linear problem. The
aim of the paper is to present a simple explicit methodology of
solving such problems and analyze the numerical results. Such
problems when studied in detail may find application in fields like
lumbar spine prosthetic, smart structures, flexible robotic arms,
and nonuniform curvature hook manufacturing. The methodology
adopted here consists of linearizing the governing nonlinear
equation about current time to obtain an incremental form of the
differential equation for the current step which in turn is solved by
employing Runge–Kutta 4th order method. The problem is solved
using the static method hence the current “time” actually refers to
pseudo time instants.

The mathematical formulation for a general elasto-plastic
curved beam is presented in Section 2. In Section 3 the solution
methodology is explained. In Section 4, results pertaining to var-
ious curves and loading are presented and discussed. An example
application of the results is also presented herein.

2. Formulation

A constant curvature cantilever of length l and included angle γ
completely describes its geometry in un-deformed configuration,
as shown in Fig. 1. With tip follower load P oriented at an angle α
with respect to the tangent at its tip deforms the beam to produce
an end angle of ψ with horizontal. Clearly, in the un-deformed
configuration, ψ¼γ when P¼0. The assumptions, scope and the
equation of the curved cantilever are described in detail in this
section. The development of the incremental constitutive law used
in the present analysis is also presented in this section.

2.1. Assumption and scope

The beam is assumed to follow Euler–Bernoulli hypothesis and
hence axial and shear deformations are neglected. It is assumed to
be of uniform curvature in the un-deformed state. It is made up of
homogeneous isotropic elastic-linearly hardening rate in-
dependent material. A quasi static load acts in the plane of sym-
metry of the beam following the deformation of the beam main-
taining a constant angle (α) with the tip tangent (see Fig. 1). The
beam is assumed to undergo large curvature change within small
strain framework. In this work, static analysis methodology is
adopted, hence the solutions are limited to statically stable
configurations.

2.2. Governing relations

In Fig. 1, the un-deformed configuration is shown in which a
Cartesian coordinate system XOY is chosen wherein OX axis is di-
rected along the right horizontal while OY points vertically down.
The arc length is measured from the fixed end along the deformed
beam and is denoted by s. The tangent at any point on the beam
axis makes an angle ϕ ( )s with OX axis. For convenience in notation,
the end angle is denoted by ψ i.e. ϕ ψ( = = ) =s s lmax . The load P is
assumed to follow the beam such that it maintains α orientation
with respect to the beam tangent at its tip.

To derive the governing equation of deformation from statics,
we note from kinematics, the curvature is given by:

κ ϕ( ) = ∂
∂ ( )s t
s

, 1

Considering kinetics at any s along the deformed beam, and dif-
ferentiating the hogging bending moment M with respect to s, we
get:

α ψ ϕ∂
∂

= − ( − + ) ( )
M
s

P sin 2

A general rate independent material model relating the mo-
ment and curvature, may be conveniently expressed as:

κ
= ( )D

dM
d 3

In Eq. (3), D denotes the elasto-plastic flexural rigidity of the beam.

Fig. 1. Schematic of a general curved cantilever under a general follower force at its
tip.
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