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a b s t r a c t

This paper deals with the equilibrium problem in nonlinear dissipative inelasticity of damaged bodies
subject to uniaxial loading and its main purpose is to show the interesting potentialities offered by the
damage theory in modeling the necking and neck propagation phenomena in polymeric materials. In
detail, the proposed mechanical model is a two-phase system, with the same constitutive law but with
different levels of damage for each phase. Despite its simplicity, it is shown that the model can
straightforwardly reproduce the overall load–elongation curve provided by experimental tensile tests by
involving only five parameters of clear physical meaning.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Many semi-crystalline and glassy polymeric materials exhibit
non-homogeneous inelastic large deformations under uniaxial
tension, with deformation localizations leading to necks of re-
duced cross-sectional area. At appropriate conditions, the neck
boundaries may propagate along the specimen. This process,
termed cold drawing, is nowadays the basis of much film and fiber
processing.

Considère published the basic criterion for necking in 1885 [1].
In 1932, Carothers and Hill [2] observed that necks in filaments of
semi-crystalline polyester propagate near the room temperature.
Later, Whitney and Andrews [3], Crissman and Zapas [4], Zapas
and Crissman [5] found that under certain conditions necking
could also occur in glassy polymers.

Orowan [6] and Nadai [7] provided a first mechanical ex-
planation of cold drawing in terms of homogeneous elongations.
Barenblatt [8] suggested a theory of polymer necking, proposing a
one-dimensional approach based on a special stress-diffusion
phenomenon, theoretically necessary for stabilizing the neck
propagation. However, this assumption did find no experimental
basis.

To describe the cold drawing in terms of nonlinear elasticity,

Antman [9,10] understood the importance of non-uniform de-
formations in necking. In spirit of the approximate theory for long
elastic bars, Antman, using an averaging procedure and defining
an energy functional, reduced the problem to the search of mini-
mizers of this functional and to the study of stability and bi-
furcation conditions.

Ericksen [11] considered a non-monotonic constitutive law,
with a serpentine shape, and demonstrated a remarkable simi-
larity between the necking and phase transition. He established
conditions for the coexistence of necked and unnecked states in a
bar subject to uniaxial tension and, using the above similarity, he
proved that the neck propagation can occur at the constant
Maxwell stress, since this value makes energetically equal both
phases. However, this model is not able to describe the formation
of a localized necking and also requires a particular form of the
constitutive law for the bar to justify the neck propagation.

Coleman [12] incorporated in the theory of nonlinear elasticity
a one-dimensional inhomogeneity in the necking region. In par-
ticular, he proposed a special constitutive relation for the depen-
dence of the tension in a thin polymeric fiber on the variation of
the stretch along the fiber axis. With this theoretical assumption,
Coleman computed equilibrium solutions which are able to de-
scribe necks, bulges, drawing configurations and periodic stria-
tions. However, looking at the experimental evidences, it is not
clear if a specimen under uniform tension can experience a so
complex variation of the longitudinal stretch.

Necking and neck propagation were analyzed numerically by
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several authors. Needleman [13] and Burke and Nix [14] studied
the hypothetical plasticity effects in necking. Hutchison and Neale
[15] proposed a three-dimensional analysis using the J2 flow the-
ory for plasticity to characterize the inelastic behavior of polymers.

Tugcu and Neale [16,17] carried out a finite-element analysis of
necking under axisymmetric and plane strain conditions. The re-
sults presented in these analyses were the computed overall load–
elongation response of the bar, as well as the evolution of the
specimen profile and the stress distribution in the bar at various
stages of the deformation process.

The numerical solution by Silling [18] of a two-dimensional
elastic necking problem, with a non-monotonic constitutive law,
demonstrated the closeness between the Maxwell and calculated
actual neck propagation stress.

The necking has been intensively investigated experimentally.
The model proposed by Peterlin and Olf [19] is the most popular.
They considered the folded chain blocks in necking of semi-crys-
talline polymers as tilted, sheared, broken off the lamellae, which
are incorporated in the amorphous microfibrils.

Gent and Jeong [20] and Gent and Madan [21] have more re-
cently proposed another model for semi-crystalline polymers.
They related necking to the mechanism of unfolding chains in
crystalline blocks and transferring them into the amorphous phase
with consequent orientation. The necking is so explained as a
mechanical melting of the folded chain blocks.

Experimental aspects of the constitutive behavior of a poly-
carbonate (Lexan) have been investigated accurately in the work
by Buisson and Ravi-Chandar [22], where a grid technique has
been used to determinate the non-homogeneous deformation
field associated with a steadily growing neck. However, in these
experimental works there has been no attempt to derive a me-
chanical constitutive relation to describe the necking.

In all the above-mentioned theoretical, numerical and experi-
mental works there was a fundamental lack in proposing and
developing mechanical models, based on the experimental evi-
dences, in order to describe thoroughly the necking and neck
propagation phenomena. In the general framework of continuum
mechanics, a new modeling of necking and neck propagation
problems is presented in this paper by using the theory of damage.

The theory of damage is particularly suitable for studying the
inelastic effects in polymeric materials [23–25]. In the context of
infinitesimal theory, the damage mechanics was introduced, about
fifty years ago, by Kachanov [26] and then developed by Chaboche
[27,28], Lemaitre [29–31] and Krajcinovic [32].

A generalization to large deformations has been proposed by
Simo [33] and Simo and Ju [34]. Subsequently, several authors
developed phenomenological models with damage to describe the
Mullin effect [35–41]. The damage in amorphous materials has
been studied by Horgan et al. [42] and by De Tommasi et al.
[43,44].

Using concepts from irreversible thermodynamics, some con-
tributions on the time evolution of damage for polymeric mate-
rials have been achieved by Rajagopal et al. [45]. With the so-
called weak formulation, some analytical studies have been per-
formed by Mielke [46,47]. In detail, he defined an energy func-
tional and a dissipation potential and sought solutions satisfying
both a condition of global stability and an energy balance.

Recently, the equilibrium problem in nonlinear dissipative in-
elasticity of damaged bodies subjected to uniaxial loading has
been treated in the paper by Lanzoni and Tarantino [48]. In this
work, applying the continuum thermodynamics theory, the con-
stitutive law for damaged materials and an inequality for the en-
ergy release rate are derived. After having formulated the equili-
brium boundary-value problem, explicit expressions governing the
global development of the equilibrium paths are computed.

The equilibrium solutions obtained in [48] will be extensively

applied in this paper. Thus, the main results achieved in [48] will
be briefly recalled in the next section. In Section 3, some experi-
mental overall load–elongation curves for high-density poly-
ethylene (HDPE) are shown, and a qualitative description of the
sequence of events unfolding in an uniaxial test is provided. The
reference model is composed of an undamaged phase and by a
damaged phase, where the necking occurs. This model is pre-
sented in Section 4, where the equilibrium conditions are imposed
and the main energetic aspects are discussed. After having mod-
eled a localized necking, the results are shown through a series of
diagrams. In Section 5, a purely energetic criterion is proposed to
evaluate the fundamental values of a neck propagation under
steady-state condition. Using the modeling carried out, the paper
closes reproducing the overall load–elongation curve describing
the localized necking and neck propagation phenomena.

2. Preliminaries and basic equations

The nonlinear damage formulation recently proposed by Lan-
zoni and Tarantino [48] will be used in this work to study iso-
thermal and rate-independent1 equilibrium problems of damaged
bodies under uniaxial tractions. In [48], a damaged material is
defined as a material characterized by a reduced capacity to store
energy (other contributions can be found in [52,,53]).2 Thus, the
effects of damage have been described by a proper damage func-
tion that has been directly included in the variable list of the in-
ternal energy. With such an assumption, the constitutive law for
damaged hyperelastic materials and an inequality for the energy
release rate have been derived in the framework of the continuum
thermodynamics. Subsequently, the equilibrium boundary-value
problem for bodies composed of damaged isotropic materials has
been formulated and explicit expressions governing the global
development of the equilibrium paths have been obtained. Along
these paths, the damage evolves and accumulates according to the
density energy level reached during the deformation process.

In [48], equilibrium solutions for a body having the shape of
a rectangular parallelepiped are presented. A sketch of the body
is depicted in Fig. 1, where the reference system adopted is also
referred. Body forces are disregarded and it is supposed that the
body is stretched and maintained in equilibrium under the sole
action of surface forces s, applied normally and uniformly on the
two basis. These are considered dead loads, namely, applied forces
characterized by a density per unit area in the reference config-
uration which does not depend on the deformation. The body is
composed of a compressible neo-Hookean material, whose un-
damaged and damaged stored energy functions, denoted by w0

and w, are expressed in the following form:
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1 Examples of time-dependent mechanical systems can be found in [49–51].
2 The stored energy function of an undamaged material in correspondence of

the apex of a crack is unbounded (see, e.g., [54–58]). On the other hand, it is
bounded for a Bell material [59].
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