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a b s t r a c t

In this paper the dynamics of Mathieu equation with two kinds of van der Pol (VDP) fractional-order
terms is investigated. The approximately analytical solution is obtained by the averaging method. The
steady-state solution, existence conditions and stability condition for the steady-state solution are pre-
sented, and it is found that the two kinds of VDP fractional coefficients and fractional orders remarkably
affect the steady-state solution, which is characterized by the additional damping coefficient (ADC) and
additional stiffness coefficient (ASC). The comparisons between the analytical and numerical solutions
verify the correctness and satisfactory precision of the approximately analytical solution. The presented
typical amplitude–frequency curves illustrate the important effects of two kinds of VDP fractional-order
terms on system dynamics. The application of two VDP fractional-order terms in vibration control is
discussed. At last, the detailed results are summarized and the conclusions are made.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Although fractional calculus had been proposed for more than
300 years, its applications to physics and engineering were just a
recent research focus [1,2]. Comparing with the traditional integer-
order counterpart, the fractional-order system is much closer to the
real nature of the world, and has more advantages, such as strong
ability of anti-noise, good robustness, high control precision and so
on. The fractional derivatives are an adequate tool to model the
frequency-dependent damping behavior of materials and physical
systems, and which have played a very important role in various
fields such as viscoelasticity, electrochemistry, bioengineering, me-
chanics, automatic control and signal processing. Accordingly, a lot of
researchers in some relevant fields had applied the fractional-order
models to solve the problems they met. For example, Gorenflo et al.
[3], Jumarie et al. [4], Ishteva [5] and Agnieszka [6] et al. respectively
studied the definitions and numerical methods of fractional-order
calculus under different senses. Wang and Hu et al. [7,8] investigated
a linear single degree-of-freedom oscillator with damping force of
fractional-order derivative, and obtained the composition of the so-
lution without external excitation. Shen et al. [9–12] investigated
several linear and nonlinear fractional-order oscillators by averaging
method, and found that the fractional-order derivatives had both

damping and stiffness effects on the dynamical response in those
oscillators. Li et al. [13] discussed the properties of three kinds of
fractional derivatives, and the sequential property of the Caputo
derivative was also derived. Li et al. [14,15] had done a lot of re-
searches in the mathematical theory of fractional-order calculus, and
also established some efficient numerical algorithms. Wahi and
Chatterjee [16] studied a special linear single degree-of-freedom
oscillator with fractional-order derivative by average method, and
analyzed the effects of the fractional-orders derivative. Xu and Li [17]
combined Lindstedt–Poincare method with multi-scale method to
study fractional-order Duffing oscillator subject to random excitation.
Chen and Zhu [18–20] studied some nonlinear fractional-order sys-
tem with different kinds of noise, and obtained some important
statistic properties of the fractional-order system. Caputo et al. [21]
presented a new definition of fractional-order derivative which took
on two different representations for the temporal and spatial vari-
ables. Atangana [22–26] studied new fractional-order derivatives in
typical nonlinear equations, and derived some new results about
fractional-order derivatives.

The well-known Mathieu equation is a linear differential
equation with periodic coefficients, and had been applied in phy-
sics and engineering fields. Many scholars had studied the Ma-
thieu equation and found that the fractional-order system could
generate different dynamical properties from the integer-order
counterpart [27–29]. Van der pol (VDP) oscillator could model the
typical self-excited or self-sustained oscillation. Leung et al. [30],
Sardar et al. [31], Xie and Lin [32] studied different type of
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fractional-order VDP oscillators by different methods, and found
some other important dynamical behaviors. Mathieu-VDP equa-
tion occurs in many physics and engineering fields, and it has
complex dynamical properties. In recent years, many scholars had
studied the Mathieu-VDP equation. For example, Momeni et al.
[33] proposed a Mathieu-VDP nonlinear equation to govern the
dust grain dynamics in the vicinity of resonance, and finally nu-
merically solved by a fourth-order Runge–Kutta method. Pandey
et al. [34] investigated the dynamics of a Mathieu-VDP equation
and a Mathieu-VDP-Duffing equation, which was forced both
parametrically and nonparametrically. It had been shown that the
steady-state response could consist of either 1:1 frequency lock-
ing, or quasiperiodic motion. Kalas et al. [35] studied the gen-
eralized Mathieu-VDP equation with a small parameter, and the
existence of periodic and quasiperiodic solutions was proved by
the averaging method and phase space analysis of a derived au-
tonomous equation. Belhaq and Fahsi [36] studied the frequency-
locking area of 2:1 and 1:1 resonances in a fast harmonically ex-
cited VDP-Mathieu-Duffing oscillator. An averaging technique over
the fast excitation was used to derive an equation governing the
slow dynamic of the oscillator. Veerman and Verhulst [37] ana-
lyzed the VDP-Mathieu equation near and at 1:2 resonance by
averaging method, and proved the existence of stable and unstable
periodic solutions near the parametric resonance frequency.

In this study, we shall consider the Mathieu equation with two
kinds of fractional-order VDP terms by averaging method, where
the fractional-order derivatives are classified based on their range
and could cover all the cases. The paper is organized as follow.
Section 2 presents the approximately analytical solution of the
Mathieu equation with two kinds of fractional-order VDP terms,
where the effects of the two kinds of fractional-order VDP terms
are formulated as additional damping coefficient (ADC) and ad-
ditional stiffness coefficient (ASC). In Section 3 the steady-state
solution and the stability condition of the steady-state solution are
analyzed. In Section 4, the comparisons between the approxi-
mately analytical solution and the numerical one verify the cor-
rectness and satisfactory precision of the analytical solution.
Moreover, the effects of the parameters in the two kinds of frac-
tional-order VDP terms are also given in this section. At last, the
detail results are summarized and the conclusions are made.

2. Approximately analytical solution of Mathieu equation with
two kinds of VDP fractional-order terms

In this paper, we shall consider the Mathieu equation with two
kinds of van der Pol (VDP) fractional-order terms as
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where ζ2 , δ , and γB t2 cos are the system linear damping coefficient,
constant stiffness coefficient and the periodic time-varying stiffness
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are two kinds of VDP fractional-order terms, where the fractional or-
ders are restricted as < <p0 11 and < <p1 22 , and ( )>K K 01 1 and

( )>K K 02 2 are the fractional coefficients of two kinds of fractional-
order terms. The introduction of fractional-order terms in Mathieu
equation lies in some dynamical devices could be modeled by frac-
tional-order derivative, such as viscoelastic and fluid–solid-coupling
device. There are several definitions for fractional-order derivative,
such as Grünwald–Letnikov, Riemann–Liouville and Caputo definitions
[1,2]. Under wide senses, they are equivalent for most mathematical
functions. Accordingly, Caputo’s definition is adopted with the form as
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where Γ ( )y is Gamma function satisfying ( )Γ Γ+ = ( )y y y1 , and the
fractional order meets − < <n p n1 while n is a natural number.

Using the following transformations of coordinates
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Eq. (1) becomes
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We shall consider the parametric excitation frequency to be
γ ω εσ= +2 0 , where ε < < 1 is a small real parameter, i.e.
ω ω εσ= + /20 . In order to obtain the first approximate solution, it
could also be rewritten as ω ω εσω= +2

0
2

0. So Eq. (3) becomes
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The solution for Eq. (4) could be supposed as

φ= ( )x a cos , 5a

ω φ̇ = − ( )x a sin , 5b

where φ ω θ= +t . Based on the averaging method [38,39], one
could obtain the standard equations as
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From the averaging method, one could select the time terminal
T as = πT 2 when ( )θP a,i ( )=i 1, 2, 3 is periodic function, or = ∞T

when ( )θP a,i ( )=i 1, 2, 3 is aperiodic one. Expanding the integral
in Eq. (6), one could obtain
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The first part in Eq. (7) could be simplified as
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In order to calculate the second part and the third part for Eq.
(7)
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