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a b s t r a c t

The synthetic fibers in a fire hose are specially oriented so as to minimize the jerk when the hose is
suddenly pressurized – at other fiber orientations the hose would either extend abruptly or shorten
abruptly. This is one example of a magic angle that separates different response directions in a deformation
mode as some driving mechanism is varied. Here we investigate magic angles for winding fibers around a
tube with an otherwise rubbery matrix by providing a hyperelastic analysis. While the driving mechanism
of pressurization is well known in this regard, we also consider the driving mechanism of matrix swelling.
Magic angles of fiber orientation are considered for axial deformation and for channel constriction.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A rubber tube that is reinforced with helically wound fibers and
then subject to internal pressure may either increase or decrease
its length. Similarly, it may either decrease or increase its inner
channel radius. For sufficiently thin tubes with sufficiently stiff
fibers the effects are correlated: length decrease accompanies
radius increase, length increase accompanies radius decrease.
The former occurs if the fibers are close to an axial orientation,
the latter if the fibers are close to a circumferential orientation.
The special “magic” winding angle (with respect to the axial
direction) of arctan

ffiffiffi
2

p
¼ arccos 1=

ffiffiffi
3

p
¼ 54:71 provides the transi-

tion between these responses in thin tubes with sufficiently stiff
fibers [9]. Fibers at this angle are naturally aligned to support both
the axial stress and the hoop stress that is generated by the
pressurization. Fibers aligned at any other angle must be rotated
by the deformation so as to achieve a stress-supporting alignment.1

It is likely that the spray hose on your kitchen sink displays fiber
reinforcement that is close to this angle. The synthetic fibers in fire
hose are aligned at this angle so as to minimize jerk when the hose
is suddenly turned on.

If the matrix is capable of carrying load then the magic angle
will generally shift. The linear elastic treatment for determining
this shift in thin tubes follows from what is known as netting
analysis [5]. Accounting for a finite wall thickness and allowing
non-linear elastic properties provide for additional changes in the
special magic angle. It now also becomes possible for a length
increase to accompany a radius increase [8]. These observations
hold great interest not only for structural applications, but also for
the design of actuators that can serve as artificial muscles [10] and
for explaining deformation and motion in a variety of biological
contexts [8]. In particular, the analysis of [8] provides a systematic
means for exploring paths in design space so as to find locations
where there is a qualitative change in some specific deformation
characteristic, e.g., the magic angle of fiber winding where axial
lengthening gives way to axial shortening. This analysis applies
also to paths in load space (at fixed design) so as to, for example,
determine specific values of finite pressure that separate axial
lengthening from axial shortening.

Similar transitions between different qualitative behaviors in
the mechanical deformation response of fiber reinforced rubbery
tubes have been noted in [2,1,3], again in the context of finite
thickness tubes with non-linear elastic behavior. The difference is
that it is not channel pressurization that causes the deformation in
these studies, rather it is an overall material swelling that drives
the deformation. In [2,1,3], swelling causes the matrix – the
medium in which the fibers are embedded – to expand. However
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sufficiently small (and hence sufficiently flat) triangular membrane element. One
edge surface has normal in the axial direction and carries a normal axial stress.
Another edge surface has normal in the circumferential direction and carries hoop
stress. The hypotenuse is aligned in the fiber direction and so is traction free (take a
Cauchy cut through the non-loadbearing matrix). Eliminating the fiber load
between the two force balance equations then gives tan 2 β¼ 2. Here 2 is the ratio
of hoop stress to axial stress in a thin walled pressure vessel. One factor of tan β
comes from the resolution of the fiber loading vector into component directions.
The other tan β is the area ratio of surface carrying axial stress to surface carrying
hoop stress.
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the fibers themselves do not expand and so become stretched as
the matrix expands. Hence swelling leads to fibers in tension
within a matrix that is in compression. The resulting deformation,
which would be a simple homogeneous volume expansion in the
absence of fibers, becomes a more complicated inhomogeneous
expansion due to the fiber action. For helically wound fibers this
would in general lead to a torsional deformation as studied in [3]
and later observed in the controlled experiment of [7]. The torsion
can be eliminated by making a symmetrical fiber winding (clock-
wise-counterclockwise balance), but in that case there is still an
inhomogeneous radial expansion as described in [2].

Fig. 1 is adapted from [2] and shows how the channel radius of
a tube can change due to swelling. In this example there is no
pressurization, and a single winding angle is considered. The
different curves correspond to different ratios of a fiber stiffness
parameter to the matrix stiffness parameter. The interesting aspect
is that, while the outer radius always expands (not shown), the
inner radius could either expand or contract. Fibers that exhibit
relatively low stiffness (γ=μ small in Fig. 1) lead to expansion of the
inner radius – as would be the case under homogeneous expan-
sion when no fibers are present. In contrast, fibers that are
relatively stiff compared to the matrix (γ=μ large) lead to channel
constriction as the matrix expands. For the example depicted in
Fig. 1 it follows that if the volumetric expansion exceeds about
1.5 times the original volume then the channel opening can be
made arbitrarily small by taking a sufficiently high fiber/matrix
stiffness quotient. This is a finite deformation effect; the linear
theory, even when generalized to include volume change,2 is ill
formulated for analyzing full channel closure.

Because Fig. 1 shows both channel opening and channel closing
under swelling as determined by the relative stiffness of the fibers
to the matrix, it follows that there will be certain stiffness ratios at
which the channel maintains a relatively constant opening as the
swelling proceeds. This is also apparent from Fig. 1 which shows
that certain curves are very close to horizontal. In view of the finite
nature of the deformation, one can characterize such an effect
either globally (e.g., small variation in radius over some finite
swelling range of interest) or locally (curve locations with

horizontal tangency). Fig. 1, while showing certain relatively flat
curves, does not show any specific locations of horizontal tangency
in the depicted range of swelling volume increase ð1ov

no4Þ.
However other examples (including the next figure) do show such
locations.

Fig. 2, also adapted from [2], shows an additional aspect of such
tube swelling when a constant pressurization is present. Each
curve now corresponds to the same tube characteristics but
subject to a different constant pressurization as the swelling
proceeds. For relatively lower pressure the swelling expands the
channel. For relatively higher pressure the swelling constricts the
channel. The overall tube length is held fixed in this example, and
one may then calculate the axial force needed to maintain the
fixed length. Sometimes this axial force is tensile while in other
cases the axial force is compressive. Fig. 2 curve locations marked
with a star correspond to zero axial force.3

The purpose of this paper is to draw out these connections as
they relate to the direction of the fiber reinforcement. Specifically
we consider both pressure and swelling as forcing variables. The
basic constitutive theory for a fiber reinforced swellable hyperelastic
material is presented in Section 2 where the stored energy density is
taken in the form ΦmðI1; v

nÞþΦf ðI4Þ. Here Φm and Φf are separate
matrix and fiber contributions, I1 and I4 are the usual invariants, and
v
n

is the swelling ratio. This is followed in Section 3 with the
formulation and solution of the relevant boundary value problem
for a tube in terms of a general Φm and Φf. Specific forms for Φm

and Φf are taken in Section 4 so as to illustrate the possibilities
for channel opening vs. channel constriction, as well as for axial
lengthening vs. axial shortening, as the swelling and pressure are
varied. Among other things this shows how different behaviors can
ensue as a function of fiber winding angle, all other structural and
material aspects of the tube being held fixed. A methodology for
determining magic angles of fiber winding as a function of pressur-
ization (at fixed swelling) is presented in Section 5. Separate criteria
are needed for channel opening and for axial lengthening in the
finite deformation theory of thick walled tubes with non-trivial
matrix stiffness. If all of the following limits hold simultaneously:
small deformation, thin wall, and no matrix stiffness, then these two
separate criteria give the same result and retrieve the classical result
of 54.71. A complementary analysis for determining magic angles
under swelling (at fixed pressurization) is presented in Section 6.
Section 7 provides concluding remarks.

2. General framework

Let X be a generic position vector in a reference configuration
ΩX that is regarded as the state of an unloaded body prior to
swelling. The load is described in the standard way in terms of
boundary tractions and body forces. Together, swelling and the
application of load give rise to an invertible deformation xðXÞ that
maps ΩX to the configuration Ωx . The deformation gradient is
F¼ ∂x=∂X. Both the compressible theory of hyperelasticity and the
incompressible theory of hyperelasticity can be generalized so as
to include a notion of swelling [15]. We consider the general-
ization of the incompressible theory. This means that the volume
is still prescribed, but the prescribed value of the volume is greater
than one in the event that swelling occurs. Thus there is a local
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Fig. 1. Deformed location of tube channel radius ri as a function of swelling v
n

(v
n ¼ 1

is the reference state of no swelling) for an unpressurized thick tube with initial
inner radius Ri, initial outer radius Ro, and Ro ¼ 4Ri . Different curves correspond to
tubes with different fiber/matrix stiffness ratios with γ and μ defined according to
(8), (42), (43), and fiber angle β¼π/6 (rad) ¼301 with respect to the tube axis. Solid
curves correspond to the six curves depicted in Figure 4 of [2].

2 That is, anisotropic linear elasticity with eigenstrains.

3 Qualitative changes are described in [8] in terms of inversion points and
perversion points on a load path. In this terminology, Fig. 2 locations of horizontal
tangency correspond to an inversion point of the channel radius deformation
parameter. With respect to the unconstrained and unswollen tube, star locations in
Fig. 2 can be viewed as corresponding to perversion points in the
constraining force.
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