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a b s t r a c t

A harmonic wavelets based technique is developed for determining the evolutionary power spectrum
(EPS) matrix of the response of non-linear chain-like MDOF structural systems subject to a multi-
component non-stationary stochastic excitation. Specifically, first a relationship between the evolu-
tionary power spectrum matrices of the excitation and of the system response is derived by using a
recently proposed locally stationary wavelet based representation of non-stationary stochastic pro-
cesses. The relationship can be construed as a direct extension of the celebrated spectral input–output
relationship of the linear stationary random vibration theory. Further, a harmonic wavelets based
statistical linearization technique is proposed for the case of MDOF non-linear systems with chain-like
architecture systems and hysteretic non-linearities. Numerical examples include MDOF non-linear
systems comprising the versatile Bouc–Wen hysteretic model. Pertinent Monte Carlo simulations
demonstrate the reliability of the technique.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Infrastructure systems are often subjected to extreme loads
such as earthquakes, strong winds, and ocean waves which are
inherently stochastic and non-stationary. Further, under these
non-stationary stochastic loads, structural systems often exhibit
non-linear behavior. In this regard, quantifying the non-linear
stochastic response behavior of such complex structures subject to
non-stationary excitations is a sustained challenge in the field of
random vibrations.

From a historical perspective, research in stochastic dynamics
can be traced back to the study of the Brownian motion by Einstein
in 1905 [1], and has since experienced a remarkable growth for
over 100 years. Further, the tools of random vibrations theory,
starting with Crandall in 1958 [2], have been applied to diverse
engineering problems; see, for instance, Roberts and Spanos [3].
Nevertheless, despite the significant level of maturity that random
vibration theory has reached for the case of linear systems, the
case of non-linear systems remains a challenging one [4]. Indicatively,

approaches for addressing non-linear problems in stochastic dynamics
include statistical linearization/non-linearization techniques [5]; sto-
chastic averaging [6]; Gaussian/non-Gaussian closure schemes [7–9];
maximum entropy principles [10]; path integral techniques [11–13],
and several other numerical approximate analytical concept [14,15]. It
is noted that certain of the techniques are based on the Markovian
property/assumption of the response, whereas in most cases their
applicability/performance is problem dependent. Regarding the sta-
tistical linearization/non-linearization technique, it has been shown
that it can capture reliably the second order response statistics of non-
linear MDOF systems; see Roberts and Spanos [3] and Socha [16] for a
more detailed presentation. Nevertheless, it can be argued that it
cannot be generalized to account for evolutionary excitation power
spectra with time-varying frequency content in a straightforward
manner. In this regard, note that a non-linear MDOF system dimen-
sion reduction approach has been proposed recently which utilizes
the statistical linearization technique in a quasi-stationary manner to
address cases of non-stationary excitations [14].

Note that potent signal processing techniques, such as wavelet
analysis[17], which have been recently applied in diverse engi-
neering problems (e.g., joint time–frequency analysis ([18,19]) can
estimate efficiently the EPS of stochastic processes based on
available realizations. In this regard, early researches on wavelet
based representations of the excitation and of the system response
include the work by Basu and Gupta [20,21], and Tratskas and
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Spanos [22]. Further researches are based on the combination of
statistical linearization and wavelet analysis to deal with non-
linearities. Specifically, Basu and Gupta [23–25] proposed an
equivalent linear stiffness expression based on the wavelet trans-
form of the non-linear function. However, it can be argued that
this treatment negates, in a sense, the joint time-frequency
capabilities of the wavelet transform since the equivalent linear
element is only time-dependent (as opposed to both time and
frequency dependent); see also Spanos and Kougioumtzoglou [26].
Further, it is noted that the above treatment refers to realizations
of stochastic processes; that is, there is no stochastic framework
for representing stochastic processes via wavelets.

Recently, Spanos and Kougioumtzoglou [26] developed a har-
monic wavelets based statistical linearization technique for obtain-
ing the response evolutionary power spectrum (EPS) of non-linear
single-degree-of-freedom (SDOF) systems. The proposed technique
is based on a mathematical representation of non-stationary
stochastic processes via the locally stationary wavelet (LSW) process
representation proposed by Nason et al. [27]. Further, it is noted that
in many practical problems the system of concern comprises of a
number of lumped masses, or nodal points, interconnected by non-
linear elements whose behavior depends only upon the relative
coordinates between adjacent points. In these situations, where one
has a chain-like structural system, it is convenient to set as the
coordinate vector in the non-linear equation of motion the vector of
the relative displacements between the nodal points. In this paper,
therefore, the aforementioned technique [26] is extended/general-
ized to be applicable for the chain-like MDOF systems with even
complex hysteretic behavior. Numerical examples pertain to the
versatile Bouc–Wen model, and comparisons with proper Monte
Carlo simulations demonstrate the reliability of the technique.

2. Harmonic wavelets elements and non-stationary stochastic
process representation

2.1. Harmonic wavelets

The family of harmonic wavelets (HW), first emphasized by
Newland [28], has been widely used for engineering dynamics
applications. For example, Spanos et al. [29] employed HWs for
estimating the EPS of non-stationary stochastic processes. Spanos
and Tratskas [22] suggested a HW based scheme for determining
the response EPS of MDOF system. Further, the time–frequency
localization features of the HW have been utilized for damage
detection applications as well [19]; see also Failla and Spanos [30]
for a broad perspective.

GHWs possess a band-limited, box-like frequency spectrum.
A wavelet of scale ðm;nÞand time-shift k has a representation in
the frequency domain as

ΨG
ðm;nÞ;kðωÞ ¼

1
ðn�mÞΔωe

� iωkT0n�m; mΔωrωonΔω

0; otherwise
;

8<
: ð1Þ

where the scale (m, n) and time-shift k parameters are considered
to be positive numbers, with Δω¼ 2π=T0, where T0 is the time
duration of the signal under consideration. The inverse Fourier
transform of Eq. (1) gives the HW representation in the time
domain as

ψG
ðm;nÞ;kðtÞ ¼

exp inΔω t� kT0
n�m

� �h i
�exp imΔω t� kT0

n�m

� �h i
iðn�mÞΔω t� kT0

n�m

� � : ð2Þ

Note that Spanos et al. [29] have also suggested an alternative
equivalent time-domain representation involving the phase and

magnitude of the HW; see also Newland [28] for more details on
the wavelet transform and the corresponding inverse transform.

2.2. Locally stationary wavelet (LSW) representation of stochastic
processes

The most widely used model of stochastic processes is the
celebrated Wold-Cramer representation associated with the
Priestley's EPS definition [31,32]. The recently developed repre-
sentation of stochastic processes by the locally stationary wavelet
(LSW) as proposed by Nason et al. [27], is adopted herein.
Note that in comparison with the Wold–Cramer model where
non-stationarity is somewhat heuristically imposed by defining
a “slowly” time-varying modulating amplitude function, non-
stationarity in the LSW model is featured in a somewhat more
natural manner by exploiting the localized wavelet amplitude.
According to [26], if the GHW is chosen for the LSW stochastic
process representation, then a nd-dimensional vector-valued random
process can be modeled as the summation of sub-processes defined
at different scales and translation levels in the form

xðtÞ ¼ ∑
ðm;nÞ

∑
k
xðm;nÞ;kðtÞ; ð3Þ

where xðm;nÞ;kðtÞ can be defined as the combination of localized
monochromatic functions weighted by random vectors. That is,

xðm;nÞ;kðtÞ ¼ aðm;nÞ;k cos ωc;ðm;nÞ;k t� kT0

n�m

� �� �

þbðm;nÞ;k sin ωc;ðm;nÞ;k t� kT0

n�m

� �� �
: ð4Þ

Note that Eq. (4) is localized in the sense that its effective support is
limited to the intervals ωA ½mΔω; nΔω� and tA ½kT0=ðn�mÞ;
ðkþ1ÞT0=ðn�mÞ�, with ωc;ðm;nÞ;k being the central frequency of a
given frequency band. That is,

ωc;ðm;nÞ;k ¼
ðnþmÞ

2
Δω: ð5Þ

Further, the symbols aðm;nÞ;k; bðm;nÞ;k represent statistically indepen-
dent random vectors with zero-mean and variance equal to

Eðaðm;nÞ;kaTðm;nÞ;kÞ ¼ Eðbðm;nÞ;kb
T
ðm;nÞ;kÞ ¼ 2Sxxðm;nÞ;kðn�mÞΔω; ð6Þ

where the superscript T denotes transposition of a matrix. The local
auto/cross EPS of the process xðm;nÞ;kðtÞ.

Sxxðm;nÞ;k ¼

Sx1 ;x1 Sx1 ;x2 ⋯ Sx1 ;xnd

Sx2 ;x1 Sx2 ;x2 ⋯ Sx2 ;xnd

⋮ ⋮ ⋱ ⋮
Sxnd ;x1 Sxnd ;x2 ⋯ Sxnd ;xnd

2
6664

3
7775
ðm;nÞ;k

ð7Þ

is a Hermitian EPS matrix, and the entries Sxi ;xjðm;nÞ;kare the two-sided
localized auto/cross spectra of the processes xiðtÞ and xjðtÞ at different
scales and translation levels i; j¼ 1;2;⋯;nd. Next, utilizing the
orthogonality conditions of the monochromatic functions
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