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a b s t r a c t

Presented is an approach for finding periodic responses of structural systems subject to unilateral contact
conditions. No other non-linear terms, e.g. large displacements or strains, hyper-elasticity, plasticity, etc.
are considered. The excitation period due to various forcing conditions—from harmonic external or
contact forcing due to a moving contact interface—is discretized in time, such that the quantities of
interest—displacement, velocity, acceleration as well as contact force—can be approximated through
time-domain schemes such as backward difference, Galerkin, and Fourier. The solution is assumed to
exist and is defined on a circle with circumference T to directly enforce its periodicity. The strategy for
approximating time derivative terms within the discretized period, i.e. velocity and acceleration, is hence
circulant in nature. This results in a global circulant algebraic system of equations with inequalities that
can be translated into a unique Linear Complementarity Problem (LCP). The LCP is then solved by
dedicated and established methods such as Lemke's Algorithm. This allows for the computation of
approximate periodic solutions exactly satisfying unilateral contact constraints on a discrete time set. The
implementation efficiency and accuracy are discussed in comparison to classical time marching
techniques for initial value problems combined with a Lagrange Multiplier contact treatment. The LCP
algorithm is validated using a simple academic problem. The extension to large-scale systems is made
possible through the implementation of a Craig–Bampton type Modal Component Synthesis. The method
shows applicability to industrial rotor/casing contact set-ups as shown by studying a compressor blade.
A good agreement to time marching simulations is found, suggesting a viable alternative to time
marching or Fourier-based harmonic balance simulations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of periodic solutions of harmonically excited systems
subject to unilateral contact constraints is of interest for many
applications, such as predicting brake disk vibrations [1], stability
analysis of delayed systems subject to material removal [2], study of
limit cycles in Lur's feedback control systems for non-smooth
mechanical systems [3,4] or mesh stiffness variation in gears-pairs
[5–7]. Popularly, methods such as harmonic balance based [8] or
shooting methods [9] are employed to find solutions of smooth non-
linear systems in an efficient manner. Yet, both of these approaches
face some inherent downfalls when non-smooth non-linearities—
systems exhibiting non-differentiability of discontinuities in the
unknowns—are encountered. On the one hand, the Harmonic Bal-
ance Method (HBM) is known to produce poor approximations of
non-smooth functions with a finite number of harmonics, producing
artefacts such as the Gibbs phenomenon [10]. Hence penalty-like

approximations of the contact inequalities are introduced [1] to
effectively smoothen the non-smoothness. On the other hand,
shooting methods in a contact framework can face ill-conditioned
gradients, making convergence difficult and increasing computa-
tional times. Furthermore, reaching a purely steady state solution
within a heavy-duty time-marching simulation may be impossible to
achieve due to the high sensitivity of the solution with respect to
system parameters, such as stiffness, frequency, and gap.

The so-called Linear Complementarity Problem (LCP) deals
with a linear algebraic system of equations subject to inequality
constraints. Originally presented in [11–13] as an alternative
formulation for quadratic programming, a few notable solution
methodologies have been introduced: the classical pivoting, also
generally referred to Lemke's algorithm [11], and iterative meth-
ods such as the Gauss–Seidel method [14,15] and Newton-like
methods [16] are among the most popular. With applications in
many scientific fields, the LCP has found a strong foothold
especially in economic engineering, mathematical programming,
games theory and recently switched electronic systems [3,17,18].
The idea is that LCP solvers can find solutions of underlying linear

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nlm

International Journal of Non-Linear Mechanics

http://dx.doi.org/10.1016/j.ijnonlinmec.2014.01.007
0020-7462 & 2014 Elsevier Ltd. All rights reserved.

n Corresponding author. Tel.: +1 514 398 5321; fax: +1 514 398 7365.
E-mail address: markus.meingast@mail.mcgill.ca (M.B. Meingast).

International Journal of Non-Linear Mechanics 66 (2014) 18–27

www.sciencedirect.com/science/journal/00207462
www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.01.007
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.01.007
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.01.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.01.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.01.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijnonlinmec.2014.01.007&domain=pdf
mailto:markus.meingast@mail.mcgill.ca
http://dx.doi.org/10.1016/j.ijnonlinmec.2014.01.007


algebraic systems subject to non-linear Kuhn–Tucker-like condi-
tions. The LCP method has already been applied to piecewise
linear mass–spring systems in a time-marching framework, sol-
ving an LCP for every time step [19]. In a similar fashion, the
application of LCPs to transient analysis frictional problems is
reported in [20].

This paper presents an approach for finding periodic solutions to
systems of ODEs involving inequalities within a unique LCP. Firstly,
the general LCP formulation is outlined. Next, different time-
derivative approximations are detailed for constructing the LCP
system. An academic application is presented, specifically looking at
a comparison of the LCP results to classic heavy-duty time-march-
ing simulations. Finally, the application of the LCP method to an
industrial compressor-blade geometry is explored with a detailed
focus on frequency domain analysis of the responses.

2. Linear complementarity problem

The formulation of an LCP lends itself explicitly to treat linear
mechanical systems subject to Kuhn–Tucker conditions such as
unilateral contact. Forced and possibly large-scale mechanical
systems undergoing unilateral contact conditions that are
T-periodic are targeted, see Fig. 1. A periodic displacement of the
discretized model in space xðtÞ of period T in time is assumed to
exist. Accordingly, it is a solution to the following combined
equations and inequations:

8 tAST ;

equation of motion ðaÞ
M €xðtÞþC _xðtÞþKxðtÞþB>λðtÞ ¼ fðtÞ
complementarity conditions ðbÞ
λðtÞr0; gðxðtÞÞr0 and λðtÞ>gðxðtÞÞ ¼ 0

8>>>><
>>>>:

ð1Þ
where ST is the circle of circumference T on which the periodic

solution is defined. The complementarity conditions can be read
thus: the contact force λðtÞ may only take on values that ensure a
compressive force. The gap gðxðtÞÞ may only take on values
ensuring impenetrability. The product of both must be zero
ensuring that contact forces may only exist if the gap is nil and
vice versa.1 The equation of motion (EOM) in Eqs. (1a) and (1b) is
derived from a discretized finite-element model with n degrees of
freedom (DOF) and m contact conditions (for which generally
m5n), where M, C and KARn�n are the mass, damping and
stiffness matrices respectively. The harmonic external forcing
fðtÞARn is of period T and displacements xðtÞARn are mapped to
the contact force term λðtÞARm by the contact constraint matrix
BARm�n through a linear gap function:

gðxðtÞÞ ¼ �BxðtÞ�dðtÞ ð2Þ
where dðtÞ is the reference position of a potentially time-
dependent moving rigid wall. The impenetrability condition is
expressed by inequality constraints on the gap function gðxðtÞÞ and
contact force λðtÞ as well as the complementarity criteria in
Eq. (1b). It should be noted here that the gap function is
considered to be purely linear in xðtÞ as expressed by Eq. (2).
Systems for which the constraint matrix varies within the period
of interest, e.g. large tangential displacements or strongly defor-
mation dependent contact interfaces, cannot be accounted for
within this approach. In order to simplify the computation, contact
between a flexible body and a rigid wall is assumed, although
flexible multibody contact problems do not pose a mathematical
limitation and the equations explicitly remain the same.

To transform Eqs. (1a) and (1b) into an equivalent LCP able to
capture periodic solutions, for a given period T, a few steps are
necessary. Firstly, a time-discretization is needed. Assuming an

Nomenclature

Roman symbols

A LCP coefficient matrix
B contact constraints matrix
I identity matrix
L linear operator
M,C, K mass, damping and stiffness matrices
F discreet Fourier transform
€x ,a acceleration vectors
Δt time step
_x ,v velocity vectors
d reference wall position
f external forcing vector
gðxÞ gap function
q underlying linear system solution
w,z complementary vectors
x displacement vector
xb, xi, xc boundary, internal and contact DOF
xcb Craig–Bampton DOF
a; b Fourier coefficients
k number of time steps
m number of contact constraints
n number of DOF
p number of Fourier terms
T excitation period
t time

Greek symbols

Λ eigenvalue matrix
λ contact force vector
Φ, Ψ, Θ weighting functions
Φcb Craig–Bampton reduction matrix
Φi, Φs internal and static eigenvectors
ω excitation frequency
ω0 first natural frequency
ϕi shape function

Abbreviations

BDS backward difference scheme
CDS central difference scheme
DOF degree of freedom
EO engine order
EOM equation of motion
ETM explicit time-marching
FEDT finite element discretization in time
HBM Harmonic Balance Method
HDHBM High Dimension Harmonic Balance Method
LCP linear complementarity problem
LE leading edge
MC mid-chord
TE trailing edge

1 In the notation used throughout this documentation, an open gap and a
compressive force are assumed to be gðxðtÞÞr0 and λr0 respectively. Other sign
conventions are possible.
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