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a b s t r a c t

A direct non-linear one-dimensional model of an elastic, thin-walled, planar beam is formulated. The model
accounts for changes in shape of the cross-section, in particular the ovalization (or flattening) occurring
in tubular beams. The deformation of the cross-section is described in the spirit of the Generalized Beam
Theory, as a linear combination of known deformation modes and unknown amplitude functions, said to
be distortions. Kinematics calls for introducing distortional and bi-distortional strains, in addition to the
usual strain measures of rigid cross-section beams. The balance equations are derived through the Virtual
Power Principle, in which distortional and bi-distortional stresses, as well as distortional forces, are defined
as conjugate quantities of distortional strain-rates and velocities, respectively. A non-linear, fully coupled,
hyperelastic law is assumed. All the distortional quantities and the constitutive law are identified, via energy
equalities, from a three-dimensional fiber-model of thin-walled beam where, for simplicity, just a distortion
mode is considered. The model is specialized to a Euler–Bernoulli tubular beam, in which only constitutive
non-linearities are retained, while kinematics is linearized. The relevant non-linear equations are solved, via
a perturbation method, for several static loadings and for large-amplitude free vibrations. The interaction
occurring between global bending and cross-section distortion is analyzed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Thin-walled beams (TWB) suffer changes of the shape of their
cross-sections, both in-plane (distortion) and out-of-plane (warping).
These deformations, different from what happens in compact cross-
sections, are not secondary kinematic effects, but they strongly affect
the mechanical performances of TWB. Well-known examples of such
distortional mechanisms are the following: (a)warping caused by the
non-uniform torsion of open TWB, which leads to a remarkable
increment of the torsional stiffness, compared to that of de Saint-
Venant [1]; (b) distortional buckling, occurring in compressed open or
closed TWB, inwhich the walls of the beam bend in the cross-section
plane, causing dangerous effects when the mode interacts with
Eulerian or flexural–torsional modes (see, e.g. [2,3]); and (c) ovaliza-
tion (or flattening), manifesting in bent tubular beams, which reduces
the bending stiffness, possibly causing the collapse of the structure
even in the elastic phase [4].

Warping of cross-undeformable beams has received great attention
in the literature [5–13], where several models were formulated, aimed
to extend the Vlasov linear theory to the non-linear field. In these

papers, the key-point of the theory is how to link the warping to the
twist, in order to keep the model one-dimensional. When the model is
derived from a 3D continuum, the task is accomplished by invoking
the classical Vlasov hypotheses (inextensibility of the middle-line and
shear-undeformability of the middle-surface) [7]; on the other hand,
when the model is direct (one-dimensional structured continuum),
the same goal is reached by introducing suitable internal constraints
among the kinematic descriptors [8–10].

In-plane distortion has also been extensively studied, mostly
in buckling, but often confined to the linear field. The approach
followed is either purely numerical [14–17] or semi-analytical
(Generalized Beam Theory (GBT) [18–21]). Few examples of semi-
analytical non-linear models are known to the authors [18]; in
particular the variational-asymptotic method (VAM) has been
exploited in Ref. [44] to catch the Brazier effect in circular tubes.
In some of these papers, the TWB is considered as an assembly of
plates, where the displacements on the cross-section are either
interpolated between nodal values (in finite strips) or described as
linear combinations of assumed modes (in GBT). The result is a one-
dimensional model depending on the nodal displacements or modal
amplitudes, all functions of the axis-abscissa (and on time).

Derivation from a 3D model, however, is not straightforward,
when geometrical non-linearities have to be accounted for, since
the interpolation functions or the distortional modes should be
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carefully chosen in order to avoid locking problems [22] due to the
fact that rigid motions cannot always be exactly described. In this
perspective, a direct approach, like that used in [8,9] for warping
only, seems more appealing, since kinematics is exact in that
context, and no interpolation of the displacement field is required.
On the other hand, the direct approach has the drawback that the
constitutive law has to be postulated, so that often the authors
have to borrow it from the literature of the 3D-models (see [9,23]).

A direct approach to the modeling of the rod bending is
presented in [24–26] for the case of non-homogeneous beams,
where links between direct 1D statements and formulations of the
3D elasticity are also established.

In some cases, models are formulated after the identification of
the micro-kinematics starting from macro-kinematics, when both
macro- and micro-models are three-dimensional, as done for
instance in [27–30].

This paper is an attempt to formulate a 1D direct model of
planar beam undergoing in-plane distortion of the cross-section,
with a constitutive law identified by a consistent 3D model. Here,
consistency refers to the fact that the kinematics of each fiber
of the 3D model is described by the same kinematics of the
1D model. To this purpose, the fundamental idea of the GBT is
borrowed, i.e. the distortion is described by assumed distortional
modes. Rigid motions are exactly described when the distortional
amplitudes are zero. The model presented here is generally formu-
lated under a large displacement regime (in contrast with most of
the papers focused on GBT), taking into account both (un-con-
strained) warping and flattening of the cross-section, described by
a generic number of shape functions. Then, it is specialized to a
tubular beam to investigate, under simplifying assumptions, the
ovalization effects.

In the model presented here, some degrees of freedom describ-
ing the deformation of cross-section are coupled to the overall
displacement of the beam. This occurrence could lead to the
design of an optimally shaped beam, able to trap energy in its
internal vibration modes which, in the considered case, are the
section vibration modes, as done, e.g. in [31–34]. Moreover the
model can be suitably used, for instance, for applications related to
soft impact of cantilevers [35–38].

The paper is organized as follows. In Section 2 a direct 1D
planar model of TWB with double-symmetric and deformable
cross-section is formulated. In Section 3 a fiber model is intro-
duced, and all the quantities of the 1D model are identified for the
simplest case of a unique distortional mode. In Section 4 the model
is specialized to a tubular beam. In Section 5 several static and
dynamic loadings are considered for some paradigmatic examples
where flattening is involved. Relevant problems are solved via a
perturbation approach; moreover, numerical results are displayed.
In Section 6, some conclusions are drawn. In Appendix A some
details of computations are shown.

2. A direct 1D model of TWB with deformable cross-section

Let us consider a beam as a one-dimensional polar continuum,
endowed with additional kinematic descriptors, able to (roughly)
describe the loss of shape of the cross-section. We confine our-
selves to double-symmetric cross-sections for which the centroid
axis coincides with the flexural center-axis. Denoting xGðsÞ the
position of the beam axis in the reference configuration, where
sA ½0; l� is a curvilinear abscissa, and xGðs; tÞ its current position at
the time t, the displacement field is described by the transla-
tion uGðs; tÞ≔xG�xG, and by the rotation Rðs; tÞ, which leads the
principal inertia triad B≔ða1; a2;a3Þ of directors a i, i¼ 1;2;3
attached to the body-point P in the reference configuration to
match the triad B¼ ða1; a2; a3Þ of the same directors in the current

configuration. Moreover, a set of n scalar fields ða1ðs; tÞ; a2ðs; tÞ;…
anðs; tÞÞ to be referred as distortional variables is introduced. Strains
are defined as follows:

eG≔RT ða1þu0
GÞ�a1

k≔axial½RTR0�
αj≔aj
βj≔a0j ð1Þ

in which a prime denotes s-differentiation and axial½�� stands for
the axial vector of the skew symmetric tensor in argument. Here,
eG and k are, respectively, the strain-vector and curvature-vector
usually adopted for locally rigid beams (i.e. beam with rigid cross-
sections, see, e.g. [39]), while αj, βj are additional strains, peculiar
to locally deformable beams. Various other vectorial parametriza-
tions of rotation and related strain measures, some of them are
different from Eq. (1b), are discussed in [40]. Here αj will be
referred to as the distortional strains and βj as the bi-distortional
strains (or distortion-gradients). It should be noticed that kinematics
of the rigid and deformable cross-section is uncoupled, since e and k
only depend on R and uG, while αj and βj only depend on aj.

The geometric boundary conditions prescribe the values of
the configuration variables at the ends, if a constraint is applied,
namely

uGH ¼ ûGHðtÞ; RH ¼ R̂HðtÞ; ajH ¼ âjH ; H ¼ A;B ð2Þ
where a curved over-bar denotes a known term.

The velocity consists of a translational velocity vector field
vG≔ _uGðs; tÞ, a spin vector field ω¼ axial½ _Rðs; tÞRT ðs; tÞ�, and a set of
scalar velocity fields _ajðs; tÞ. By time-differentiating the previous
equations, we get the strain rates _e, _k , _α j, _β j as related to the
stretching velocity gradients by [41]

R _eG ¼ v0
G�ω� x0

G

R _k ¼ω0

_α j ¼ _aj;
_β j ¼ _a 0

j ð3Þ

We consider the beam loaded by generalized external forces,
defined as dynamic quantities spending virtual power on the
independent velocity fields [42], via

Pext≔
Z
S

p � vGþc �ωþ ∑
n

j ¼ 1
qj _aj

 !
ds

þ ∑
B

H ¼ A
ðPH � vHþCH �ωHþQjH _ajHÞ ð4Þ

Here, p, PH and c, CH are forces and couples acting in the field and
at the boundaries H ¼ A;B of the beam, respectively. Moreover,
qj, Qj are terms peculiar to the locally deformable beam, referred
to as distortional forces. Concerning the internal virtual power, we
introduce generalized internal forces, or stresses, defined as fol-
lows:

Pint≔
Z
S

t � R _eGþm � R _kþ ∑
n

j ¼ 1
ðDj _α jþBj

_β jÞ
 !

ds ð5Þ

where t and m are force-stress and couple-stress referred to the
current configuration, respectively, and R _eG, R _k the pushed-forward
strain-rates. Moreover, Dj, Bj are internal contact actions that will be
called distortional and bi-distortional stresses, which are dual to the
distortional strain-rates and their spatial gradients, respectively.

To obtain the balance equations, we equate the external and
internal powers, and use the Virtual Power Principle (VP), by which
the equality is satisfied for any admissible virtual motion. By using
Eqs. (3), the Principle readsZ
S

p � vGþc �ωþ ∑
n

j ¼ 1
qj _aj

 !
dsþ ∑

B

H ¼ A
ðPH � vHþCH �ωHþQjH _ajHÞ
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