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a b s t r a c t

The primary objective of this paper is to formulate the governing equations of shear deformable beams
and plates that account for moderate rotations and microstructural material length scales. This is done
using two different approaches: (1) a modified von Kármán non-linear theory with modified couple
stress model and (2) a gradient elasticity theory of fully constrained finitely deforming hyperelastic
cosserat continuum where the directors are constrained to rotate with the body rotation. Such theories
would be useful in determining the response of elastic continua, for example, consisting of embedded
stiff short fibers or inclusions and that accounts for certain longer range interactions. Unlike a
conventional approach based on postulating additional balance laws or ad hoc addition of terms to
the strain energy functional, the approaches presented here extend existing ideas to thermodynamically
consistent models. Two major ideas introduced are: (1) inclusion of the same order terms in the strain–
displacement relations as those in the conventional von Kármán non-linear strains and (2) the use of the
polar decomposition theorem as a constraint and a representation for finite rotations in terms of
displacement gradients for large deformation beam and plate theories. Classical couple stress theory is
recovered for small strains from the ideas expressed in (1) and (2). As a part of this development, an
overview of Eringen's non-local, Mindlin's modified couple stress theory, and the gradient elasticity
theory of Srinivasa–Reddy is presented.

& 2014 Elsevier Ltd. All rights reserved.

1. An overview of theories with material length scales

1.1. Background

There has been increased interest in recent years in developing
structural theories that have the ability to capture material length
scale effects. This is primarily due to the need to model the
structural response of a variety of new materials which are being
developed that require the consideration of very small length
scales over which the neighboring secondary constituents interact,
especially when the spatial resolution (or length scale) is compar-
able to the size of the secondary constituents. Examples of such
materials are provided by nematic elastomers and carbon nano-
tube composites [1] and environment resistent coatings made of
CNT reinforced materials [2,3]. In addition, the flexoelectric effect
[4], which is a size dependent strain gradient effect on the
polarization of ferroelectrics, induces piezo-electric response in
non-piezoelectric materials at very small scales.

Most structural systems involve the use of rods, beams, plates,
and shells. They are also commonly used in micro- and nano-scale

devices, that is, MEMS and NEMS. Due to the small physical
dimensions of these devices, microstructure-dependent size
effects are often exhibited by structural elements used in various
micro- and nano-scale devices [5,6]. All beam and plate theories
based on the classical elasticity theory do not account for the
microstructure-dependent size effects. Therefore, the conventional
beam and plate theories are not capable of predicting the size
effects, that is, their response may be influenced by the micro-
structural parameters. Thus, it is useful to develop modified
theories of beams and plates that account for size effects and
geometric non-linearity. The present study is focused on formulat-
ing beam and plate theories with aforementioned effects. The
following sections provide a background for the present study.

1.2. Eringen's non-local elasticity model

Classical continuum theories are based on hyperelastic consti-
tutive relations which assume that the stress at a point is a
function of strains at that point. On the other hand, the non-
local continuum mechanics assumes that the stress at a point is a
function of strains at all points, at least in some neighborhood of
the point, in the continuum. These theories contain information
about the forces between atoms, and the internal length scale is
introduced into the constitutive equations as a material parameter.
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Such non-local elasticity was initiated in the works of Eringen [7–
9] and Eringen and Edelen [10].

According to Eringen [7,8], the state of stress σ at a point x in
an elastic continuum not only depends on the strain field ε at the
point (hyperelastic case) but also on strains at all other points of
the body. Eringen attributed this to the atomic theory of lattice
dynamics and experimental observations on phonon dispersion.
Thus, the non-local stress tensor σ at point x is expressed as

σ ¼
Z
Ω
Kðjx0 �xj; τÞtðx0Þ dx0 ð1Þ

where t(x) is the classical, macroscopic stress tensor at point x and
the kernel function Kðjx0 �xj; τÞ represents the non-local modulus,
jx0 �xj being the distance (in the Euclidean norm) and τ is a
material parameter that depends on internal and external char-
acteristic lengths (such as the lattice spacing and wavelength,
respectively). The macroscopic stress t at a point x in a Hookean
solid is related to the strain ε at the point by the generalized
Hooke's law

tðxÞ ¼ CðxÞ : εðxÞ ð2Þ
where C is the fourth-order elasticity tensor and : denotes the
‘double-dot product’ (see Reddy [11]).

The constitutive equations (1) and (2) together define the non-
local constitutive behavior of a Hookean solid. Eq. (1) represents
the weighted average of the contributions of the strain field of all
points in the body to the stress field at point x. In view of the
difficulty in using the integral constitutive relation, Eringen [8]
proposed an equivalent differential model as

ð1�τ2ℓ2∇2Þσ ¼ t; τ¼ e0a
ℓ

ð3Þ

where e0 is a material constant, and a and ℓ are the internal and
external characteristic lengths, respectively.

The non-local theory of elasticity of Eringen has been used
extensively in the last decade to study lattice dispersion of elastic
waves, wave propagation in composites, dislocation mechanics,
fracture mechanics, surface tension fluids, etc. The use of non-local
elasticity to study size-effects in micro and nanoscale structures
was first carried out by Peddieson et al. [12]. They used the non-
local elasticity to study the bending of micro and nanoscale beams
and concluded that size-effects could be significant for nano
structures. Zhang et al. used non-local elasticity to show the
small-scale effects on buckling of MWCNTs under axial compres-
sion [13] and radial pressure [14]. Wang [15] and Wang and
Varadan [16] have studied wave propagation in carbon nanotubes
(CNTs) with non-local Euler–Bernoulli and Timoshenko beam
models. The small-scale effect on CNTs wave propagation disper-
sion relation is explicitly determined for different CNTs wave
numbers and diameters by theoretical analyses and numerical
simulations. The scale coefficient in non-local continuum
mechanics is roughly estimated for CNTs from the obtained
asymptotic frequency. The findings proved to be effective in
predicting small-scale effect on CNTs wave propagation with a
qualitative validation study based on the published experimental
work. Wang et al. [17] formulated a non-local Timoshenko beam
theory, neglecting the non-local effect in writing the shear stress–
strain relation.

Reddy [18,19] and Reddy and Pang [20] have formulated non-
local versions of various beam and plate theories, and presented
numerical solutions of bending, vibration, and buckling of beams.
The results show that the non-local parameter μ¼ τ2ℓ2 ¼ e20a

2 has
the effect of softening the beam, and thus predict larger deflec-
tions and lower buckling loads and vibration frequencies (see
Figs. 1 and 2; taken from [18]).

There are numerous other papers that study the response of
nanosystems using theories that are based on Eringen's

differential model (see [21–24], and references therein). Reddy
[18,19] pointed out that Eringen's differential model does not
conform to the normal structural mechanics formulations in that
the resulting equations are not derivable from a strain energy
potential for the cases in which the von Kármán non-linearity
along with kinetic energy are accounted for (see Reddy and El-
Borgi [25] for details). Also, the force boundary conditions asso-
ciated with the non-local beams, when expressed in terms of the
displacement variables, contain the non-local parameter. Thus,
there is a need to reexamine Eringen's differential model closely
for its suitability in accounting for non-local elasticity.

1.3. Modified couple stress theories

Theories of micro-structured media have been developed
dating back to the 1960s. There is a large body of literature on
small deformation couple stress theories with constrained micro-
rotation, beginning with the early works of Mindlin, Toupin,
Green, Naghdi, and Rivlin [26–32]. The classical couple stress
elasticity theory of Koiter [27] contains four material length scale
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Fig. 1. Non-dimensional center deflection w vs. the non-local parameter μ for a
simply supported beam under uniformly distributed load of intensity q0 (L denotes
the length and h is the height of the beam); taken from [18].
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Fig. 2. Non-dimensional critical buckling load N cr and non-dimensional natural
frequency ω vs. the non-local parameter μ for a simply supported beam (L denotes
the length and h is the height of the beam); taken from [18].
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